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ABSTRACT.  This study presents a method to estimate land surface temperature (LST) by calibrating spatial interpolation using 
satellite-derived surface emissivity. Four spatial interpolation methods including Inverse Distance Weighting (IDW), Spline, Kriging, 
and Cokriging were tested to interpolate LST in southern New England using ground temperatures measured at national weather sta-
tions (NWS) in summer 2001. The performance of each interpolation method was evaluated using field measurements collected in a 
mixed forest in Connecticut during the study period. Kriging is recommended for LST interpolation when surface emissivity data are 
not available. By analyzing the field data, we found that the maximum daily interpolation error occurred in the early morning and the 
minimum error occurred at around hour 18:00. Validation result shows that the accuracy of spatial interpolation of LST was much im-
proved after being calibrated by satellite-derived surface emissivity. The average interpolation error reduced from 10 oC before calibra-
tion to 1.56 oC after calibration. 
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1. Introduction  

Land surface temperature (LST) is usually measured at a 
system of first, second, and third order national weather sta-
tions (NWS) in the United States. Most isometric LST maps 
are interpolated from measurements at these sample locations 
using different spatial interpolation methods. The interpola-
tion of climatic data from sparsely stationed network has been 
a focus of research for a long time (Hughes, 1982; Phillips et 
al., 1992; Price et al., 2000; Vizuete et al., 2002). There are a 
number of deterministic and geostatistical interpolation meth-
ods to estimate the values in between sampling locations. For 
example, Inverse Distance Weighting (IDW) (Willmott et al., 
1985) and Spline (Wahba, 1981) have been used to interpolate 
air temperature and its anomalies. The Kriging technique has 
been applied to estimate monthly ozone exposure and summer 
frost in growing season (Lefohn et al., 1988; Lindkvist & 
Lindqvist, 1997), and Cokriging for estimation of surface air 
temperature (Ishida & Kawashima, 1992). 

Depending on the spatial attributes of the data, interpola-
tion accuracies vary widely among different spatial interpola-
tion methods. For example, significant differences were found 
among the temperatures estimated using different interpola-
tion methods in Eastern Texas (Vizuete et al., 2002). There-
fore, the selection of spatial interpolation method is especially 
important in the region where data collection is sparse and 
variable changes are significant over short spatial distances. 
Furthermore, unlike other climatic variables such as precipita-
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tion and solar radiation, the accuracy of LST estimation is 
strongly affected by the surface capability of emitting radi-
ance (Synder et al., 1998). Many algorithms for estimating 
LST from satellite data are based upon the assumption that 
ground surface acts as a blackbody (emissivity equals one). In 
fact, most Earth’s surfaces emit only a fraction of the energy 
emitted by a blackbody at the same temperature. The emission 
capacity of a land surface, compared to that of a blackbody, is 
referred to surface emissivity (Qin & Karnieli, 1999). 

Surface emissivity for a large area is usually not available 
during the satellite overpass because it is very difficult to 
measure directly. Satellite-sensed thermal infrared (TIR) data 
is the major source for estimating surface emissivity for a 
region. For example, Moderate Resolution Imaging Spectro- 
radiometer (MODIS) provides daily surface emissivity at 1 × 
1 km spatial resolution based on conventional image classi- 
fication and laboratory measurements (Snyder et al., 1998). 
These “class-based” surface emissivities are valuable for stu- 
dies at regional and global scale, but too coarse for local stud-
ies. An alternative method is to obtain relative surface 
emissivity, or “pixel-based” surface emissivity, directly from 
satellite TIR data. This method does not need ground mea- 
surements and is independent of the spatial resolution of the 
data. It is applicable to surface emissivity estimation from fine 
spatial resolution satellite data such as Landsat Enhanced 
Thematic Mapper Plus (ETM+) TIR bands with 60 × 60 m 
pixel size (Yang, 2003). 

While there have been comparisons of interpolation me- 
thods, little research has been directed towards the assessment 
and calibration of LST interpolation. Therefore the objectives 
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of this study are to: 1) evaluate the effectiveness of interpo- 
lation methods in estimating LST using weather station mea- 
surements, and 2) calibrate the LST interpolation using sate- 
llite-derived surface emissivity. 

2. Background 

2.1. Study Area and Data 
The experimental site of this study is an observation 

tower (Lat. 41o47’30” N, Long. 72o22’29” W) in a mixed 
forest in Coventry, Connecticut. This site is flat with 47-year 
old red maple (Acer rubrum) overstory and occasional white 
pine (Pinus strobes) and trembling aspen (Populus tremu-
loides) trees at the edges. The specific boundary of the study 
area is defined as a 100 km buffer around the tower (Figure 1). 
The radius of 100 km is to ensure that there are at least 10 
NWS sites in this area so that spatial interpolations can be 

conducted. 
Field measurements were made at the experimental site 

between June and September 2001. Air temperatures of the 
canopy surface were collected using aspirated copper-con- 
stantan thermocouples every five seconds and averaged every 
30 minutes. Theses data were used to evaluate the effective- 
ness of each interpolation method and the calibration process 
using satellite-derived surface emissivity. 

There are 13 NWS in the buffer area (Table 1). Hourly 
surface temperatures at these weather stations during the stu- 
dy period were retrieved from the National Climatic Data Ce- 
nter (NCDC). Temperature measurements of NWS at 10:30 
each day during the study period were extracted to generate 
temperature contour surfaces by different interpolation meth-
ods. 

Landsat ETM+ images (path 13/row 31) acquired on 
September 5, 2001 was used to derive surface emissivity for 

 

Experiment site 

National Weather Station

Landsat scene 
0 12.5 25        50        75       100

Kilometers

Figure 1. Study area in southern New England.

Note: It is a 100 km buffer around the experimental site from where in situ measurements were collected for validation. The area 
is mostly covered by one scene (path 13/row31) of Landsat imagery that was used to derived surface emissivity. Temperature 
measurements during the study period used for spatial interpolation were retrieved from 13 weather stations in this area. 
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the study area. Satellite-derived surface emissivity was then 
applied to calibrate the temperature interpolation using station 
measurements in the same day. 

 
Table 1. National Weather Stations from Where Hourly 
Temperature Observations Were Retrieved from National 
Climatic Data Center for the Study Period and Used to 
Interpolate Temperature Surfaces 

Station 
# 

City State Elevation 
(m) 

Latitude 
(oN) 

Longitude 
(oW) 

1 Bridgeport CT 1.5 41.175 73.146 
2 Danbury CT 139.3 41.371 73.483 
3 Groton CT 3 41.328 72.049 
4 Hartford CT 48.8 41.938 72.683 
5 Hartford CT 5.8 41.736 72.651 
6 Meriden CT 31.4 41.510 72.828 
7 Willimantic CT 75.3 41.742 72.184 
21 Orange MA 169.2 42.570 72.291 
22 Pittsfield MA 363.9 42.427 73.289 
25 Westfield MA 82.6 42.158 72.716 
26 Worcester MA 300.5 42.267 71.876 
28 Providence RI 15.5 41.722 71.433 
29 Westerly RI 24.7 41.350 71.799 

 
 

2.2. Spatial Interpolation 
The interpolation techniques tested in this study include 

two deterministic interpolation methods -- IDW and Spline, 
and two geo-statistical interpolation methods -- Kriging and 
Cokriging. 

IDW is based on the assumption that values close to one 
another are more alike than those that are farther apart. In 
other words, those measured values closest to the prediction 
location will have the most influence on the predicted values 
than those farther away (Johnston et al., 2001). In IDW, each 
measured point has a local influence that diminishes with the 
linear distance between the sampled and unsampled points. 
How fast the local influence diminishes with the distance is 
controlled by the parameter called power. If the parameter 
power equals zero, there is no decrease with distance, the 
weights will be the same and the prediction will be the mean 
of all measured values. If the power value is very high, only 
the immediate few surrounding points have influence on the 
prediction. With the default power value of two the interpola-
tion method is also called Inverse Square Distance Weighting. 

Splining is a commonly used deterministic interpolation 
method to represent two-dimensional curves on three-dimen- 
sion surfaces. The Spline method can be considered as fitting 
a rubber-sheeted surface through the known points using a 
mathematical function. In ArcGIS, the Spline interpolation is 
a Radial Basis Function (RBF). The RBFs are used for cal- 
culating smooth surfaces from a large number of data points. 
The Spline function produces good results for gently varying 
surfaces such as rainfall. Spline is not suitable when there are 
large changes in the surface values within a short horizontal 

distance. 
In classical statistics, observations at sampled points are 

assumed independent. That is, there are no correlations be-
tween the observations. Kriging is a geostatistical technique 
similar to IDW in that it uses a linear combination of weights 
at known points to estimate values at unknown points. Kri- 
ging considers the distances between sampled points and their 
autocorrelation. Kriging uses a semivariogram, a measure of 
spatial autocorrelation between points, so the weights change 
according to the spatial arrangement of the samples (Goo- 
vaerts, 1997). 

Cokriging is a moderately quick interpolator that can be 
exact or smoothed depending on the measurement error model. 
Cokriging uses information on more than one variable. Cok-
riging calculation includes estimating the autocorrelation for 
each variable as well as all cross-correlations between vari-
ables. Cokriging has the following models: 
 

1 1 1Z (s)= + (s)µ ε                                (1) 

2 2 2Z (s)= + (s)µ ε                  (2) 
 

where Z1 is the main variable of interest, representing surface 
temperature, Z2 is the ancillary variable, representing the 
elevation of weather stations in this study, µ1 and µ2 are un-
known constants, ε1(s) and ε2(s) are two types of random error. 
Cokriging uses multiple datasets and allows investigation of 
both autocorrelations for Z1 and Z2 and cross-correlation be-
tween Z1 and Z2. 

 
2.3. Surface Emissivity Derivation and Calibration 

Surface emissivity for a large area is usually derived 
from classification of satellite imagery and ground measure-
ments (Snyder et al., 1998). Since calibration of the spatial 
interpolation needs “pixel-based” relative emissivity instead 
of “class-based” absolute emissivity, we calculate surface 
emissivity of the study area by its definition, i.e., dividing 
satellite-derived spectral radiance of each pixel with the spec-
tral radiance of blackbody. Spectral radiance of each pixel 
was estimated from the digital number (DN) of Landsat 
ETM+ band 6 (high-gain) pixel values using the following 
equation (Singh, 1988): 

 

max min min
min

(R R ) (DN DN )R R
255

− × −
= +       (3) 

 
where R is the mean spectral radiance in the spectrum of 
10.4-12.5 µm (Wcm-2sr-1µm-1), Rmin and Rmax are minimum and 
maximum scene radiances, and DNmin and DNmax are mini-
mum and maximum pixel digital numbers in the thermal im-
age. 

Blackbody is an ideal material that completely absorbs 
all incident radiation and converts it to internal energy, then 
emits (re-radiates) the absorbed energy at the maximum possi-
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ble rate per unit area. We calculated blackbody radiance in 
three ways (Yang, 2003). The first regarded pixels that have 
maximum digital number in the image as blackbody and used 
the maximum DN of high-gain thermal band (226) to replace 
DN in Eq.3. The second assumed a perfect blackbody and 
used 255 to replace DN in Eq3. In this case, the blackbody 
radiance (Rmax) of Landsat 7 ETM+ high-gain thermal band 
has a value12.65 Wcm-2sr-1µm-1 after July 1, 2000 (NASA, 
2003). The third replaced the DN in Eq.3 by the average of 
the maximum DN of the scene and 255. The third one gave 
the best result and was used in this study. 

We calculated surface emissivity for each pixel of the im-
age using map algebra function in Spatial Analyst in ArcGIS 
software. Derived surface emissivity map was then used to 
calibrate the spatial interpolation in the following procedure. 
First, we extract surface emissivities of the pixels where NWS 
sites are located from satellite-derived surface emissivity. We 
also retrieved temperature measurements at 10:30 AM on 
September 5, 2001 at weather stations from NCDC. Then we 
transformed measured temperatures to standardized tempera-
tures by dividing them with satellite-derived surface emissiv-
ity at each station. We used standardized temperatures at 
NWS to interpolate LST using Kriging method. Finally we 
converted interpolated temperature map to surface tempera-
ture map by multiplying it with the satellite-derived surface 
emissivity. 

3. Results and Discussion 

The output of the interpolations includes 348 temperature 
surfaces for a consecutive 87-day period. Figure 2 illustrates 
the spatial patterns of temperatures interpolated from NWS 
measurements on September 5, 2001 using different interpola-
tion methods. Results from IDW showed a typical “cow eyes” 
pattern in circle extents, indicating its strong local influence 
of the value at weather stations (Figure 2a). Kriging showed 
the pattern with consideration of both local influence and 
spatial autocorrelation of samples (Figure 2c), while Spline 
showed a smoother pattern (Figure 2b). Cokriging with 
consideration of elevation resulted in almost the same pattern 
as that from Kriging (Figure 2d). This is because the ancillary 
variable in Cokriging, such as elevation, has small variations 
in the study area so that its contribution to the interpolation 
could be ignored. 

 We also examined the performance of each interpolation 
method using scatter plots between predicted temperature and 
observed temperature at the experimental site (Figure 3). The 
predicted temperatures are the temperatures at 10:30 each day 
in summer 2001 extracted from interpolated temperature sur-
faces. The observed temperatures are in situ measurements on 
the observation tower. We found that all methods yield high 
correlations between interpolated and observed temperatures 
(R2 = 0.94) at the experimental site. This indicates that with 
ground measurements calibration all methods can be used to 
interpolate LST. Similar results were obtained by examining 
the root mean square error (RMSE) from cross validation of 
each interpolation method (Table 2.) Meanwhile we found 

that, without ground measurements calibration, interpolations 
alone overestimate an average of 8 oC at the experimental site. 
This is probably due to the difference in surface absorption 
and emittance of radiation between forest surface at ex- 
perimental site and open space at NWS sampling sites (i.e., 
airports). 

 
Table 2. Descriptive Statistics of RMSE in Cross Validation 
of LST Interpolation Using NWS Temperature Measurements 
at 10:30 for Consecutive 87 Days (July 2 to September 26, 
2001) 

 Root-Mean-Square-Error (oC)  
 IDW Spline Kriging Cokriging N

Mean  2.091 1.851 2.056 1.923 87

Median  2.029 1.78 1.986 1.828 87

Minimum  1.048 0.482 0.924 0.72 87

Maximum  4.738 4.892 4.947 4.524 87

Standard Deviation 0.611 0.685 0.642 0.692 87

 

Figure 4 shows the daily variation of interpolation error 
of IDW on September 5, 2001. The interpolation error ranges 
from 4.1 oC to 19 oC with an average of 10 oC. Highest in- 
terpolation error occurred at hour 07:00 in the morning. The 
error decreased after 07:00 and reached the smallest at around 
18:00. The reason could be that solar radiation received by 
different land surfaces tends to be saturated in the late after-
noon. The significant variation of interpolation error indicates 
that the time of data collection is also an important factor in 
LST estimation. Daily minimum interpolation error of 4 oC 
also indicates that spatial interpolation alone is not sufficient 
to estimate accurate LST without further calibrations. 

Figure 5 is the surface emissivity of the study area de-
rived from Landsat high-gain TIR image. We used high-gain 
TIR data for the reason that it has a large range of brightness 
values and gives more accurate temperature estimation in 
most situations. Through calibration using satellite-derived 
surface emissivity, the average difference between interpo-
lated and observed temperature reduced from 10 oC to 1.56 oC. 
The improvement in interpolation by surface emissivity is 
because that most NWS sites are located in open areas such as 
airports, and the interpolation method is based on the assump-
tion that the study area has a homogeneous land surface with 
similar surface emissivity. 

4. Conclusion 

For a specific location that has ground measurements 
available for calibration, any of the four interpolation methods 
discussed could be used to interpolate surface temperature. 
For a region with sparsely field measurements, the calibration 
method using satellite-derived surface emissivity presented in 
this study is a good option in estimation of accurate LST. For
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a. IDW 

c. Kriging d. Cokriging 

b. Spline 

 
Figure 2. Temperature surfaces patterns interpolated by IDW, Spline, Kriging, and Cokriging using temperature 
measurement at 10:30 on September 5, 2001 retrieved from national weather stations. 
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Ordinary Kriging Interpolation 
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Ordinary Cokriging Interpolation 
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Figure 3. Scatter plots between observed temperatures every day at 10:30 during July 2 and September 26 in 2001  
at the experimental site and predicted temperature using four different inteprolation methods. 
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Figure 4. Daily variation of the prediction error of IDW at the experimental site on September 5, 2001  
using original temperature measurements from weather stations. 
 
 
 

 

Experimental site 

Country boundary 

 

Figure 5. Surface emissivity map derived from Landsat ETM+ TIR data acquired on September 2, 2001. 
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a region without surface emissivity or satellite TIR data, 
Kriging interpolation is recommended due to its considera-
tions of prediction confidence in error map and spatial auto- 
correlation between sampling sites. Cokriging is suggested for 
areas with rough terrains and large variation in elevations. We 
recommended that our method of combining spatial inter- 
polation and satellite-derived surface emissivity for LST esti- 
mation be tested in more diverse landscapes for validations. 
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