Post classification change detection of four lake drainage basins within the Pawtuxet watershed between 1985 and 2010

Michael Yanchuk NRS 533
December 4, 2013

Study Area Background

- Pawtuxet watershed totals 60,035 ha
 - Lost 1,279 ha Deciduous Forest (1985-2010)
 - Gained 870 ha Urban Land use (1985-2010)
- Scituate Reservoir located within drainage basin (along with other drinking water reservoirs)

What is the problem?

- Landscape Change (forest to urban)
- NPS pollutants flowing through stream network and settling in lakes

Common Pollution Sources:

- sediment from earth disturbances
 (housing construction projects, tilled crop land)
- fertilizers and pesticides used by homeowners and farming practices
- Pollution sources contribute nitrogen and phosphorus, degrading water quality and clarity

Why should we care?

- Harmful Algal Blooms
 - Cyanobacteria can cause concern for harmful toxins

Effects:

- Water clarity and dissolved oxygen in lakes
- Lake ecosystem and terrestrial wildlife
- Human health
- Drinking water treatment systems
- Recreation
- Tourism/economy

Source: Waterworld.com

Historical Water Quality Monitoring

 Water quality monitoring provides documentation of changes over time

Example:

- Secchi disk depth (m) is the water quality parameter of interest to the study
 - provides a record of water clarity
 - Can be an indicator of chlorophyll

Question:

 How has land use changed within lake drainage basins since monitoring records have been collected (1988-2012)?

Source: Friends of Gulf of St. Vincen

Data Collection Methods

- Watershed Watch Program directs volunteer based monitoring between April and November each year
 - field recorded parameters such as temp, DO, pH, secchi depth
 - lab processed parameters such as Total N, Total P, bacteria, etc.
- · Data entered into Excel workbooks by volunteers, students, and staff
- Recently developed into a database with spatial relationship to monitoring sites locations
 - Efficient selection of records through the years for any site

Detecting Change in lake drainage basins: Preparation and Process

- Determined which of the 28 monitoring stations have complete records (1988-2012)
- Many stations were lacking consecutive years of records

Detecting Change in lake drainage basins: Preparation and Process

- Created lake pour points for sites of interest
- Used spatial analysis toolset (watershed tool) to create flow direction, accumulation lines from pour points and DEM

Detecting Change in lake drainage basins: Preparation and Process

• Clipped Land Use Rasters (1985 and 2010) to lake watershed polygons

Detecting Change in lake drainage basins: Preparation and Process

 Quantified land use change to urban (1985-2010) for study area lake watersheds using ERDAS Imagine mask tool

Tiogue Lake

Carr Pond

Spectacle Pond

Flat River Res

Land Use Change Totals

WW15: Johnson Pond (Flat River Reservoir)

	acres	ha
Total Urban	2995	1212
Change to Urban	1907	771
Total Area	35953	14549
Percent Change	5%	5%

WW25: Mashapaug Pond/Spectacle Pond

	acres	ha
Total Urban	932	377
Change to Urban	51	20
Total Area	1123	454
Percent Change	5%	5%

WW54: Carr Pond/Tarbox Pond

	acres	ha
Total Urban	41	16
Change to Urban	33	13
Total Area	1120	453
Percent Change	3%	3%

WW55: Tiogue Lake

	acres	ha	
Total Urban	8	53	345
Change to Urban	2	31	93
Total Area	17	73	717
		201	4 20/

Further Research Ideas

- Regression Analysis for secchi depth and chlorophyll records spanning 1988-2012
- Relationship between land use change and secchi depth trends
- Additional post classification change from forest to other land uses

Questions?

