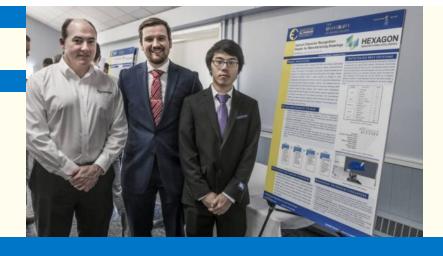


Optical Character Recognition Reader for Manufactured Drawings


hexagonmi.com/en-US

TECHNICAL DIRECTOR:

Jonathan O'Hare

TEAM MEMBERS: (L to R)

Jonathan O'Hare James Luther (C & CS) Kevin Ma (C)

PROJECT MOTIVATION:

In the manufacturing industry, companies use computer aided design (CAD) software to create, modify, analyze and optimize a design. CAD programs have increased the efficiency and productivity of the designer and improved the quality of the design. Product manufacturing information (PMI) is included as metadata in more comprehensive CAD models, with information such as geometric dimensioning and tolerancing (GD&T) symbols and glyphs. Currently, companies have not incorporated PMI in their CAD models and resort to conveying the necessary GD&T information through 2D layout drawings, requiring human interpretation. The information from manufacturing drawings is extracted manually and logged into other programs. This process is time-consuming, is prone to errors, and results in massive losses for companies. Hexagon hopes that we will create an application that can recognize and extract PMI from manufacturing drawings using optical character recognition (OCR); enter the information into other programs automatically with minimal human interaction, thus reducing error rates with improved efficiency.

ANTICIPATED BEST OUTCOME:

The best outcome for this project is to first train an OCR engine to recognize and extract all of the relevant GD&T symbols in the product manufacturing information with greater than 90% accuracy. The extracted information should be put into a logical format so that other programs can use it to directly create measurement routines for an automated measuring system. We would also need to integrate the OCR engine that we have trained into a standalone application as well as a mobile application, with the code being portable so that it can be used on any platform and distributed for use across multiple devices.

IMPLICATIONS FOR COMPANY AND INDUSTRY:

A working mobile application for GD&T character recognition would be very useful to many customers and could be sold as an inexpensive add-on to extended capability with Hexagon's existing software products. The other benefit of having the OCR engine as a mobile application is that it could be used as a direct link between Hexagon and their individual users and could also be used as a tool to maintain customer relations with their customers.

PROJECT OUTCOME:

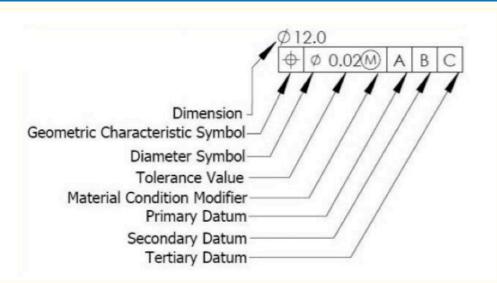
The Anticipated Best Outcome was not achieved: the mobile application was not developed.

KEY ACCOMPLISHMENTS:

Testing of different OCR engines: Tested 7 different OCR engines and applications, Tesseract, JavaOCR, ImageGear for Java, ImageGear for C/C++, FineReader, LeadTools Winforms OCR Modules and Winform OCR Advantage to determine which engine to use for the foundation of our OCR engine.

Evaluation of OCR engines: Evaluated each of the OCR engines by comparing and contrasting the supported languages, the requirements for training new language, its accuracy, as well as the licensing options for the respective engines. Determined that Tesseract is a good engine to use for this project.

Preparing training files: Manually generated the training text and image file for Tesseract training, which includes GD&T symbols of different font size mixed with each other. Used Tesseract OCR Chopper to generate box file coordinates for all of the GD&T symbols. Ran commands to generate the unicharset file using the TIFF and box file pair.


Training Tesseract: Finished the training process of Tesseract by making a starter traineddata from the unicharset and using this as a base to build upon. We iterated through this process to push accuracy of character recognition close to the desired level of 90%.

Integrating Tesseract into Hexagon's PC-DMIS: Integrated Tesseract with GD&T recognition into a test harness Hexagon provided with the help of Hexagon developer Robert Jurca. Through this we were able to integrate Tesseract into PC-DMIS without having to gain access to the program.

Optical Character Recognition Reader for Manufactured Drawings

hexagonmi.com/en-US

Fig 1: Example of a feature control frame used in CAD (Computer-aided Design) blueprints to describe the conditions and tolerances of a geometric control.

TYPE OF TOLERANCE	CHARACTERISTIC	SYMBOL
	STRAIGHTNESS	_
FORM	FLATNESS	
	CIRCULARITY	0
	CYLINDRICITY	A
PROFILE	PROFILE OF A LINE	\cap
PROFILE	PROFILE OF A SURFACE	\Box
	ANGULARITY	2
ORIENTATION	PERPENDICULARITY	
	PARALLELISM	11
	POSITION	\oplus
LOCATION	CONCENTRICITY	\bigcirc
	SYMMETRY	
RUNOUT	CIRCULAR RUNOUT	1
Ronoor	TOTAL RUNOUT	21

Fig 2: Some of the common GD&T (Geometric Dimensioning and Tolerancing) symbols seen in feature control frames. These are the symbols we need to train Tesseract to recognize.

Image	p\Perpendicularity20\perp2.tif		Browse
	Ø0.05	A	
Process DII			

Fig 3: Screenshot example using the test application developed by Hexagon. This is used to integrate Tesseract with GD&T recognition into the company's software, PC-DMIS.

Open	Save Re	load Merg	ge Split Ins	ert Delete	Charact	er É	₩ X 192 + Y 210 + W 25 + H 42 +
Box Coordinates Box Data Box View							
	Char	x	Y	Width	Height		aAàÀáÁãÃáÁ
62	ΙÉ	2292	135	25	42		anananana
63	ě	2327	137	22	40		
64	Ê	2362	135	25	42		
65	é	158	211	22	41		ế Ê ệ E f E g G h H i
66	É	192	210	25	42		
67	ê	228	218	22	42	1	
68	ê	262	214	25	46		
69	f	297	219	13	33	1	OpPgQrRsSt T
70	F	319	219	22	33		UDPOURKSSI
71	g	352	227	21	34	1	
72	G	384	218	31	35		
73	h	428	219	20	33		
74	Н	461	219	25	33	-	890 bày bằng
35	786 312	3 808 31	163		Find	-	890 bày băng

Fig 4: Example of a box editor needed for the training process. It reads common image formats such as PNG or TIFF create boxes around the characters that Tesseract needs to recognize. Data includes the box coordinates, the font, as well as the font size of the character.