
Pison iOS Integration

The objective for the Pison iOS integration project is to extend Pison’s existing Windows and
Android systems to encompass macOS and iOS systems. Device compatibility will increase Pison’s
competitive market-space; by incorporating the largest device platforms, Pison can offer their
device to a wider range of customers. Ultimately, this equates to greater profits and overall
recognition within the wearable and assistive technology markets.
Another motivation of the Pison iOS integration project is saving Pison’s engineers time by writing
code that is portable and compatible with Pison’s pre-existing Java system. Without interfacing with
Pison’s existing system, every addition would need to be rewritten for the macOS and iOS
platforms. Instead, by adding Bluetooth functionality and bridging it with their existing system, we
allow Pison to transfer all of the work they’ve done to the macOS and iOS platform. Saving time
while producing cross-platform software provides invaluable resources for the development of
Pison products.

Project Motivation 

Overview of Key Accomplishments
Implemented a Bluetooth manager in Objective-C that utilizes Apple’s Core Bluetooth Framework
to gain access to Apple’s Bluetooth hardware. Then, that entire code is wrapped in Objective-C++,
so that it can be called from by a code written in pure C++. Finally, the team implemented the Java
Native Interface file in pure C++, which allows Java to call the methods inside of the Bluetooth
manager code. A visual representation of the function call process is shown below.

Specific Details of Key Accomplishments
● Objective-C: Learned Objective-C to implement Bluetooth manager code. Created programs

to check the team’s understanding of the features unique to Objective-C.
● Low Energy Bluetooth (BLE): Researched Bluetooth LE and how it communicated with

devices. Implemented code to communicate with a Low Energy Bluetooth device.
● Java Native Interface (JNI): Learned how to interface Java and Objective-C. Implemented a

program to demonstrate how to use JNI to call to Java. Wrote a native Java program, compiled
it to create a native library. Wrote C++ code that defines the Java methods. See Fig 1 for
more information about the JNI process.

● Noble: Noble is an existing platform that utilizes many aspects of the Core Bluetooth
Framework that the project relies on. Using Noble and Node.js, a code that scans and
connects to local peripheral devices was created. The scanning code was the starting point
for using core Bluetooth in this project.

● Setup Bluetooth Manager (Objective-C): The initial function allocates the space in memory
for the Central Manager and then initializes it. It sets all helper variables and booleans to their
appropriate values, which later ensures the code is happening sequentially, the central
manager is not busy, the information is retained through strong pointers, etc.

● Scan and Connect to Device (Objective-C): To circumvent the need for wait functions and
additional booleans, the scan function repeatedly calls itself until the manager has hand
enough time to power on. The connect function is then invoked, and capable of getting a list of
known peripherals by their identifiers, and will automatically connect to Pison devices based
on their UUID.

● Populate Services and Characteristics (Objective-C): Apple provides two functions that are
automatically invoked upon a service or characteristic of the device being discovered. Because
the Java code needs something to call when it’s ready to get the services and characteristics,
however, invokable helper functions had to be added to pass this information to the JNI.

● Read, Write, and Notify (Objective-C): Reads the Uart transmitter characteristic value and
prints it to the console so that the user is able to see what is being received. Takes a value
from the user and writes it to the Uart receiver characteristic. Monitors the Uart transmitter
data and detect changes in data and notifies the user of changes. See Fig 2 for more
information about the Bluetooth manager dependencies.

● Callback class for Objective-C++ library: An Objective-C++ code that wraps the Objective-C
code so it can be called from the Java Native Interface implementation which is written in pure
C++. Implements functions that call all of the Bluetooth manager class functions.
Implements functions to read the Objective-C objects because the pure C++ JNI code cannot
have any link to the Objective-C code.

● Setup Bluetooth Manager (C++/JNI): Initializes the central manager from the Bluetooth code
and the Java Virtual Machine pointer. Calls the setup function from the Callback class and
reads the state of the central manager. Change the Bluetooth status to Bluetooth manager
state. To see how the files are organized to make a JNI call possible, see Fig 3.

● Scan and Connect to Device (C++/JNI): Makes four calls into the callback library to scan,
check if devices have been discovered, and read their UUID and device name. Also invokes
two helper functions that convert the object to Java.

● Populate Services (C++/JNI): Converts the native device to a Java device, and calls into the
callback library to populate services, which in turn invokes the method that waits within the
Objective-C code for a service to be discovers and returns it.

Technical Directors: David Cipoletta, Sam Karnes, Mike Kowalczyk, Sid Srikumar | Consulting Technical Director: Brenden Smerbeck (‘17)

The anticipated best outcome is to have a fully functioning macOS
platform. The macOS platform will be a dynamic library that will
contain method definitions for Pison’s existing Java System. The
Pison engineers will load the dynamic library into the Java system
and be able to communicate with the macOS Bluetooth hardware.
The library will contain a Bluetooth manager class written in
Objective-C, a callback class written in Objective-C++, and a Java
Native Interface written in pure C++. The dynamic library will give the
user all the same functionality as Pison’s existing Windows and
Android systems.

Key Accomplishments

Anticipated Best Outcome

Team Members: Keara Cole (CPE), Alisha Mitchell (CPE)

ELECOMP Capstone Program Director: Professor Harish R D Sunak

ELECOMP Website: https://uri.edu/elecomp-capstoneemail: sunak@ele.uri.edu telephone: 401-874-5859

Figures

Results towards achieving the Anticipated Best Outcome will be 
presented at the Summit.

Project Outcome

Fig. 2: Flowchart of the Bluetooth Manager Class.  This shows the 
dependencies of the central manager which controls the Bluetooth hardware.

Fig 3: File hierarchy within the Pison iOS Integration Project. Displays the 
division of major files and the dynamic BLE library.

Fig. 1: Java Native Interface (JNI) process.  The diagram shows how the 
JNI passes information as well as calling methods from Java and 

functions from C++.


