
Application Deployment 
Tracking System

Successful web applications are built around the concept of continuous integration; the
ability to modify existing features and add new features on-the-fly. Using a system that
tracks the status of these changes is imperative to getting them in the hands of customers
quicker. During a release of updated software there are several steps that require the input
of many team members. This is because communicating what exactly needs to be
accomplished in a coherent way is not trivial, which can result in delays on the completion
of tasks. Delays in releasing have an impact on the ability of a company to react. Reaction
time, given the right circumstances, can be costly. The main motivation for this project is to
create a web application that would help to reduce the release cycle time of releasing
updates to an application and therefore reduce the reaction time for the company.

Project Motivation 

Technical Directors: Daniel Jaquez, Gary Jutras

The best anticipated outcome is to develop a web application that displays
build information. The data will be received from a server, which contains
the build number, the status, start time, end time and the overall duration of
the build. This information will be presented to the users, as a Gantt Chart.
The chart illustrates the time schedule of each build and has it displayed as
a type of bar chart. With the Gantt Chart highlighting the duration of each
build, this will help project members plan accordingly depending on what
has to be achieved.

Research and Implementation of Test Driven Development: 
To avoid having complex classes that involve using several overly complicated
methods, following the Test Driven Development process will help reduce the amount of
time fixing the code and prevent not being able to follow what the class does. The cycle
will start with creating a test, run the tests so that it fails, and write code until it passes
the tests. This also helps keep the classes simple and easier to manage.

Research on Dependency Injection:
eMoney Advisor has certain coding standards that we needed to follow throughout
developing the application. One of the biggest coding standards that we have been
exposed to was dependency injection. Dependency injection is a technique whereby
one object (or static method) supplies the dependencies of another object. In other
words, dependency injection is like the middleman that separates two objects from each
other in order to make them independent.

Displayed Build Data using React and Pagination:
Using the information from the mock server, we needed to display that data onto a table.
Since there was already code that gets the data from the server, using React, we then
placed it all onto a table. The data that was displayed, included the status, build number,
duration, start time, and end time. To make sure only 20 builds were being displayed at
a time, a pagination class would keep track of what was displayed and only 20 builds
would be shown at a time.

Displaying build information as Gantt Chart:
After being able to display build information in the form of a table, the final step is the
transfer that data onto a gantt chart. With the gantt chart, it would help visually show the
overall status of a build, which can help project members plan according to what the
current status of the build is. To do this, we used Google React Charts to display the
primary build details.

Attempted to Finish JumpCloud Login Configuration:
In the beginning of the semester, login functionality for our application seemed to work
on one of our base applications but not on the other. The other base application is
where we wanted to be able to login but was not possible. We then attempted to figure
out what the problem was, but could not due to the fact that the SustainSys package
library we were using seemed to be incomplete.

Fetched Basic and Detailed Data From a Multiple Mock API Endpoint:
We implemented the retrieval of data that we wanted using RestSharp and mock API
endpoints. These were created using Postman, an API development environment. Once
the application receives the data, it is then deserialized so that we would be able to use
it in our application. This was all done using Newtonsoft. Newtonsoft is a Json library
that helps .NET work with JSON objects and JSON data.

Update Existing Code to meet eMoney Advisor's Coding Standards:
The initial fetching code that fetched the data from the server was not up to par with
eMoney’s coding standards. To fixed this, we had to go back and edit it in order to
create something sustainable and scalable. In order to do that, we had to extract most
things that were done into their own separate methods and follow the dependency
injection technique.

Wrote Appropriate Unit Tests:
In order to get a better sense of software development, we had to create unit tests for
our code. Most companies use unit tests in order to create scalable projects and make it
easier to detect if something was malfunctioning as soon as the new code is updated.

Key Accomplishments

Anticipated Best Outcome

Team Members: Jackie Chow (CPE), Jeffrey Martinez (CPE)

ELECOMP Capstone Program Director: Professor Harish R D Sunak

ELECOMP Website: http://web.uri.edu/elecomp-capstoneemail: sunak@ele.uri.edu telephone: 401-874-5859

Figures

Figure 2. Developed application workflow. This diagram highlights what 
processes the application goes through in order to function.

Figure 1. Test driven development (TDD) workflow. TDD is important to 
create scalable clean code.

The Anticipated Best Outcome was achieved.

Project Outcome

Figure 3. Gantt chart example. This example gantt chart is what our final 
gantt chart will look like. It displays time information in a clean and 

readable way.Figure 4. Build information table. This table displays the build information that was 
retrieved from an eMoney server. The URL endpoints have been redacted.


