
In the Agile process, developers use a set of acceptance criteria called a “Definition of Ready”
(DoR) to ensure a task is in a state that is both workable and poses little risk of delayed
completion. A team agrees on this set of standards that all tasks must meet before it is
included in a sprint. Currently, there is no tool that will walk a team through comparing their
work items to this DoR during the backlog refinement process. Most teams follow manual
checklists and the use of verbal consent from participants. During the backlog refinement
process, there is a lot of discussion about each item that is not captured in any form. There
are many times when team members want to recall key points from these discussions, but
they must rely on their imperfect memory for details. The RU Ready application will automate
much of the process of walking through a team’s DoR.

Project Motivation 

Technical Directors: Daniel Jaquez, Gary Jutras, Darius Strasel, Elliot Young | Consulting Technical Director: Brenden Smerbeck (‘17)

The anticipated best outcome for this project has evolved since the
Symposium. We have chosen to focus on the development of the
definition of ready, allowing the creation, editing, and deletion of the
DoR criterion. We aimed to integrate with Jira to retrieve a list of
teams. To create a container page for the DoR configuration. To
implement DoR creation and deletion via linking through Redux store
actions and features. And finally to allow the editing and reorganizing
of the DoR. All these things link to the backend through a complex
network of React, Redux, and C# API calls.

Jira Controller: The Jira controller verifies that a user either has been
authenticated through Jira and has allowed RUReady to make asynchronous API
calls on their behalf. If a user is not authenticated, the controller redirects the web
page to Jira for the user to input their credential and saves their token information in
session for future use

Frontend API Link: Front end API calls for a list of teams via a Redux and React
framework as shown in Fig. 3. This connects to the Teams API, discussed below
and shown in Fig. 4.

Teams API: The Teams list controller verifies that the user has Jira tokens in
session and either redirects them to sign in if that is not or forwards the request to
the Team's service. This service first forwards the appropriate CRUD request to the
repository which packages the contents in Http to be forwarded to Jira. Upon return
from Jira and the repository, the data is then processed in the service to comply
with data models before being converted to JSON and sent back to the Teams
controller and then ultimately back to the front end to be rendered Fig. 4. Because
there is no way to directly get a list of teams for a user, the team's service works
through several Jira API calls to completely compile a list of teams. A complete list
of teams is used to determine a complete list of roles that are in turn used to
determine a complete list of users. This is then compared to session information
and information from previous calls are combined to create a functional list.

Team Rendering: Front end data mappers from Json to Team list were
implemented to parse the files received from the backend Teams API, referenced
previously. This linked the JSON file to individual teams which were contained
within a page that renders a list of Teams Fig. 1, to account for any members on
multiple teams. This was styled with both inline and individual CSS files.

DoR API: The DoR controller has endpoints for Get, Post, and Delete REST
actions. These requests are then forwarded to the DoR service. The service
forwards Get and Delete requests immediately and does validation checking on
Post body before forwarding the request to the repository. The repository creates,
deletes, reads and writes JSON files to the file system to store a team's DoR
information. Upon return from the repository, the service then verifies that a DoR is
present and either returns a default or formats the DoR to be sent back to the front
end to be rendered Fig. 4.

Criterion/DoR Rendering: Front end API calls for a list of criteria functioned
similarly to those done for the Teams list, but the link to the backend varied since in
these instances the front end was actually able to update the data and send API
requests directly. These changes required their own frontend data mapper from
JSON to the DoR criterion, and like the Teams page, there needed to be a page
that renders a list of criteria Fig. 2. The page contained card components that
render a single criterion, with each type of criterion being rendered in a slightly
different way to represent the different information contained within. This was styled
with external CSS.

Front End Actions: The frontend links to the backend, referenced previously,
works using Redux Data modeling and transfer, using action creators, processors,
gateways, and data storage. This is a bit beyond what is shown in Fig 3 and Fig. 4
but is an important part of how the program actually functions.

Key Accomplishments

Anticipated Best Outcome

ELECOMP Capstone Program Director: Professor Harish R D Sunak

ELECOMP Website: https://uri.edu/elecomp-capstoneemail: sunak@ele.uri.edu telephone: 401-874-5859

Figures

Data and software flow diagram

Top: Screenshot of Teams list page populated with 
Team data from Jira.

Right: Screenshot of a single Definition of Ready 
criterion being edited.

Updated Best Anticipated Outcome Achieved. Initial goals were out of 
scope, but once updated the work was completed.

Project Outcome

RUReady
Cooperative Backlog Refinement Software for Agile Development
Team Members: Patrick Hurney (CPE), HopeRose Puroll (CPE & CSC)

React and Redux architecture, with link to external C# API


	EMoney-SummitPoster-1920-review
	Slide Number 1


