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Abstract

In multi-armed bandit problems, information acquired from exper-
imentation is valuable because it tells the agent whether to select a
particular option again in the future. This paper tests whether people
undervalue this information because they are ambiguity averse, or have
a distaste for the variance of the unknown mean of the payoff distri-
bution. Using Kahn and Sarin’s (1988) model of ambiguity aversion,
I derive the prediction that ambiguity averse agents have lower than
optimal Gittins indexes, appearing to undervalue information, but are
willing to pay more than ambiguity neutral agents to learn the true
mean of the payoff distribution, appearing to overvalue information.
This prediction is tested with a laboratory experiment which elicits a
Gittins index and a willingness to pay on six two-armed bandits. Con-
sistent with the predictions of ambiguity aversion, the Gittins indexes
are significantly lower than optimal and the willingness to pay are sig-
nificantly higher than optimal. However, the magnitude of the errors
is invariant to small changes in ambiguity.

*This draft is preliminary. Comments welcome at cma@uri.edu. I am grateful for
insightful discussions with and encouragement from Jeff Banks, Colin Camerer and
Paolo Ghirardato, an audiences at the 2000 Fall Meetings of the Economics Science
Association and the University of Rhode Island for helpful comments, and the Russell
Sage Foundation for financial support. The instruments for the experiments presented
here are available at http://eeps6.caltech.edu/ tma/mab/ambig/OneAskMain.html. and
http://eeps6.caltech.edu/ cma/mab/ambig/SellAskMain.html.



1 Introduction

In many economically significant environments, agents must repeatedly choose
among uncertain alternatives about which they can learn only through
experimentation. Examples include the situations of a shopper deciding
whether to purchase his favorite brand of orange juice or experiment with a
new one he has never tried and an oil company deciding whether to continue
testing a tract of land or to move its equipment to another tract. If these
agents do not experiment enough, they can lose considerable welfare: the
shopper could miss out on a delicious new brand of juice he would purchase
and enjoy in the future, and the oil company may engage in an expensive
recovery operation based on too few good test results. On the other hand,
if these agents experiment too much, they may lose welfare as they pursue
inferior choices.

Despite the economic importance of this sort of experimentation, lit-
tle is known about how agents approach such problems. Building on find-
ings that agents do not experiment enough in search problems (Cox and
Oaxaca, 1989; 1990; 1992; 1996; Pratt, Wise and Zeckhauser, 1979), An-
derson (2000b) demonstrated that laboratory subjects do not experiment
enough when choosing among uncertain alternatives. Similarly, when di-
rectly queried, laboratory subjects had lower than optimal Gittins indexes
(Anderson, 2000a). However, the potential explanations of risk aversion,
unobserved experimentation cost and hyperbolic discounting, did not ex-
plain the underexperimentation. Therefore, the extant research leaves us
without an understanding of why agents’ bandit strategies are suboptimal.
This understanding could help economists develop carefully tailored public
policies and corporate strategies to help improve the welfare of those facing
bandit problems.

This paper considers considers the suboptimality could be attributable to
ambiguity aversion. It develops Kahn and Sarin’s (1988) model of ambiguity
aversion into a model of behavior in bandits with Bernoulli payoffs and beta
priors. The formal model generates a seemingly paradoxical prediction:
agents’ Gittins indexes will be lower than optimal, so it appears they do
not value information enough, but they will pay more than optimal for
information about the value of an uncertain arm, so it appears they value
information too much. This prediction is tested directly in a laboratory
experiment.

The next section of this paper explains some of the many applications
of the bandit environment. Section 3 defines the a multi-armed bandit and



presents the notation which will be used in subsequent sections. Section
4 distinguishes risk from ambiguity, and introduces the model of ambiguity
aversion which will be adapted to bandits. Section 5 discusses the interpreta-
tion of ambiguity aversion, especially the crucial assumption that, although
ambiguity aversion is modeled by a failure to reduced compound lotteries,
agents use Bayes rule to update their prior beliefs to reflect observed pay-
offs. It then goes on to prove that the Gittins index exists and is unique
for the ambiguity averse agent. Section 6 proves several properties of the
Gittins index, and derives the predictions that ambiguity averse agents will
have lower Gittins indexes than ambiguity neutral agents, but will also be
willing to pay more to learn the true mean of an ambiguous arm than am-
biguity neutral agents. The experimental design used to test this prediction
is presented in Section 7, and the results of the experiment are in Section
8. Section 9 discusses the results and considers the implications ambiguity
aversion for policymaking.

2 Applications of the Experimentation Environ-
ment

Conceptually, experimentation problems focus on the value the agent assigns
to the information obtained from experimentation. This information value
arises from the expected increase in future payoffs based on the information.
A surprising array of practical and economically significant decisions can be
explained in terms of experimentation and information value:

Brand Choice: As mentioned above, a consumer shopping for a prod-
uct he frequently buys, like orange juice or window cleaner, faces an exper-
imentation problem: he must decide whether to purchase the best brand
he’s tried so far, or to experiment with new brands. He knows how good his
favorite brand is on average, and how much it varies in quality, but he can
learn about the new brand only by trying it. Therefore, he must consider
whether the value of the information obtained about the quality of the new
brand is worth foregoing his favorite brand. If he learns the new brand is
better, he can use this information to improve his future utility by buying
the new brand again. On the other hand, if it is worse, he has missed out
on his favorite brand once, but he can return to it on the next purchase.
If he underestimates the impact better orange juice will have on his future
utility, he may never try the new brand and deprive himself of a possible
gain.

Exploration: The oil company also faces an experimentation prob-



lem. Any agent exploring for natural resources tests land parcels to decide
whether to mine or drill them. In this case, both additional testing and
moving to a new tract are experimentation. The company can improve its
estimate of how much oil is in the current tract with additional testing, or it
can conclude that additional testing is so unlikely to influence its recovery
decision that its equipment would be better used exploring another tract.
If the company undervalues the information it would gain from additional
testing on the current tract, it might decide to drill based on too few good
test results, embarking on an expensive recovery operation in an area with
few resources, or it might decide to abandon the parcel based on too few
bad test results, leaving valuable resources in the ground.

Research and Development: Researchers want to allocate their time
among a number of projects in a way that will maximize their chance of mak-
ing an important discovery. For instance, a pharmaceutical company might
experiment with several different approaches to treating a disease. The in-
formation acquired from experimentation can be used to focus subsequent
research on the most promising alternatives, reducing the costs that they
would incur by pursuing unpromising ones. However, if the company under-
values the information additional research on a specific treatment would pro-
vide, they may abandon an effective and profitable treatment whose promise
was not immediately apparent.

Job and Price Search: Search problems are a special case of experi-
mentation problems. Searcher’s choices are somewhat different than those
just described. Rather than repeatedly choosing from among multiple al-
ternatives, at least one of which gives an uncertain payoff, searchers must
decide whether to exit the problem with a known payoff stream (i.e., accept
an offer) or to experiment by waiting for another offer. The information
value here represents not the value of information per se, but rather the
expected increase in future payoffs arising from the chance that future offers
will be better.

For example, a worker looking for a job must decide to accept a wage
offer, and receive that wage forever, or to experiment by continuing to look
for a better offer. For low offers, she can expect to receive a better offer in
the future, and this possibility constitutes the information value. If she does
not experiment with enough different prospective employers, she could end
up underemployed.

Similarly, a consumer looking for the best price on a product must decide
whether to buy from the closest store at that store’s price, or to experiment
by searching other stores for a better price. The information value in this
problem arises from the possibility that other stores have lower prices, and so



the consumer may gain from searching. If the consumers do not experiment
with different stores, stores can charge high prices, knowing consumers will
not seek lower prices elsewhere.

Given the range and economic significance of these naturally occurring
bandits, it is important that economists understand why people do not make
optimal decisions. Public policies and corporate strategies can be developed
based on this understanding which will help agents facing bandit problems
to improve their welfare.

3 Formalizing the Experimentation Environment

To conduct a careful study of behavior in experimentation problems, the
experimentation environment must be formalized. This section builds the
theoretical foundations necessary to understand the extensions of experi-
mentation problems discussed here. First, it introduces the multi-armed
bandit, a formal framework for studying experimentation. It then proceeds
to explain how uncertain alternatives can be valued using a certain alterna-
tive: the expected payoff from a certain alternative which makes an agent
indifferent between the certain and uncertain alternatives captures the dis-
counted present value of present experimentation.

3.1 Multi-armed Bandits

The experimentation problems described earlier can all be formally modeled
as multi-armed bandits. The term bandit is used because each alternative
can be thought of as a different slot machine. Each alternative, or arm,
has two levels of randomness. First, an arm’s payoffs are are randomly
distributed. Second, one or more of the parameters of the arm’s payoff dis-
tribution are unknown, but are drawn from known distributions themselves.
In the case of the shopper looking for orange juice, his favorite brand which
he has tried many times is a “known” average payoff arm, because he knows
how much quality varies, and has a very clear idea of how good it is on
average. The new brand, on the other hand, has unknown average payoff.
The shopper has beliefs about how good it is on average, and about how
much it varies, but he does not know for sure; he can update his beliefs by
experimenting with the new brand.

In addition to a collection of arms, a multi-armed bandit must also have
a discount sequence which indicates the present value of payoffs received in
each future period. This is usually idiosyncratic to the agent. The agent
combines her beliefs about the likelihood of different average payoffs with



her beliefs about the variance of payoffs around the average to formulate a
strategy which maximizes the present discounted value of payoffs received.

3.1.1 Information Value

The key concept in bandit problems, and the one which will eventually be
used to identify the causes of undervaluation, is information value. The
information value is the present discounted value of the expected increase in
future payoffs arising from information gained by present experimentation.
The consumer seeking orange juice can select the new brand, assuming its
uncertainty, but also expect to gain from it. If the new juice is bad, he can
switch back to his favorite brand next time. But if the new juice is good, he
will have found a better juice, which he will buy and enjoy every period in
the future and which he would not have found if he had not experimented.
The information value captures the expected contribution to future payoffs
arising from the possibility the new juice is better; it reflects the possibility
the new juice is bad only in the present period because the shopper can
switch back to his favorite brand.

If agents underestimate the information value, they will not experiment
enough and may lock onto an alternative which gave good payoffs early, but
which is not necessarily the one with the best average payoff. On the other
hand, if agents overestimate the information value, they will experiment
too much and waste choices on alternatives with low average payoffs. This
intuition provides the basis for the experiment described in Section 7. It asks
subjects for the information value they perceive from a single unknown arm.
Their reported information values can be used to test for optimalityg by
comparing it to the optimal information value for an exponential discounter.

3.2 Bandit Notation

For simplicity, attention is restricted to two-armed bandits. Otherwise, the
notation I use largely follows that of Berry and Fristedt (1985).

3.2.1 Arms

An arm consists of a distribution from which payoffs are drawn, a set of
distributions from which the distribution of payoffs is selected and a prior
over the set of distributions. Let Q € D denote the distribution from which
a payoff is drawn when the arm is chosen, where D is the set of possible
payoff distributions. The agent’s prior over the elements in D is denoted G.
Although, except where specified, the theory given here works for general



@, D and G, those who prefer concreteness may consider ) to be a normal
distribution with known variance ¢? and unknown mean u, D the set of
normal distributions with variance 02 and p € R, and G a normal distribu-
tion from which p is drawn with known mean v and known variance 72. I
will also consider the case where Q is binomial payoff distribution with an
unknown mean 6, D is the set of possible binomial distributions, and G is a
beta distribution with unknown parameters o and .

When an arm is selected, a payoff X is drawn from ). The agent uses
Bayes’ rule to update her beliefs that @ is a particular element in D. Let F
on D denote the updated set of beliefs. Further, let (X)F on D denote that
the beliefs F' have been updated to reflect the payoff X.

The two-armed bandits I consider will have one arm F', and a second
arm with a known @. Since ) will have only one parameter, the mean of
the normal distribution, this known arm will be denoted A, where X is the
value of the mean of the known Q.

3.2.2 Discount Sequences

A bandit consists of two elements: a collection of arms following the de-
scription above, and a discount sequence giving the discounted present value
of payoffs in future periods. A general discount sequence will be denoted
A = (o1,a9,a3,...), where a; denotes the relative value of payoffs re-
ceived in period ¢t. In this notation, an exponential discount sequence is
A = (1,6,6%,...). When it is convenient, A(") will be used to denote the
one-period-ahead continuation of A, (ag, as,...).

Given these elements, the two-armed bandits on which this paper focuses
can be written (F, \; A), where F' is the unknown @ bandit, A is the known
(@ bandit, and A is the discount sequence. Of particular interest will be the
case where A is exponential, which will be denoted (F, ;).

Berry and Fristedt (1985) characterize the set of discount sequences for
which a bandit reduces to an optimal stopping problem.

Definition 1 For any discount sequence A = (a1,a9,as,...), let vy =
>, ar. Then A is regular if, fort =1,2,...

Yt+2 < Y41 (1)
Y41 Ve

provided that yip1 > 0.



Knowing this is important because optimal stopping problems are much bet-
ter understood, and much easier to compute solutions for, than the general
bandit problem.

3.2.3 Strategies, Worths and Values

A strategy in a bandit is a series of history-dependent arm selections o,
designating an arm choice in each period for each possible F' in that period.
The worth of a strategy (what it is expected to pay) is given by

W(F,\; A;0) = Eg[i ar X, (2)

where X is the payoff received at time 7 from whichever arm is prescribed
by o given the F' at time 7.

The value of the bandit is the expected payoff given that the agent plays
the optimal strategy (assuming it exists),

V(F,\;A) =supW(F, \; A;0). (3)
g

Two other expressions of value are of interest. Let V¥ (F,\; A) be the
value of selecting F' in the current period and then continuing optimally
and VA(F,\; A) be the value of selecting A initially and then continuing
optimally.

VE(F,\; A) = a1 E[X|F] 4+ E[V((X)F,\; AD)] (4)
VME, X A) = alh + V(F, )\ AD) (5)

These expressions will be useful in understanding the value function. The
difference in these functions, VF(F,\;A) — VA(F,\; A) will be denoted
A(F, )\ A).

3.2.4 Gittins indexes and Information Values

Two more quantities are useful for comparing the value of information among
arms. The Gittins index, denoted A(F, A), is the value of a known mean
arm for which the agent is indifferent between selecting the unknown arm
and the known mean arm in the current period. The information value, the
present discounted expected value of additional payoffs attributable to the
information gathered from experimentation, is the Gittins index minus the
expected value of the arm.



4 Ambiguity Aversion

The concept of ambiguity aversion was most directly expressed by Ellsberg
(1961). He posed a thought experiment where agents had to choose between
an urn which contains 30 red balls and 60 balls in some unknown combina-
tion of black and yellow. Agents were asked to rank two pairs of bets: X
gave a prize if a ball drawn from the urn was red, and Y if the ball drawn
was black; X’ gave a prize if the ball is either red or yellow, and Y’ gives a
prize if the ball is either black or yellow.

Most people prefer X to Y and Y’ to X’. This is paradoxical because this
pair of preferences is inconsistent with any fixed belief about the mixture of
black and yellow balls in their urn: choosing X over Y implies a belief that
there are fewer than 30 black balls, and therefore more than 30 yellow balls
which implies X’ should be preferred to Y’.

The Ellsberg paradox demonstrates that people prefer known probabil-
ity bets to unknown probability bets, and provides an operationalization of
ambiguity. However, no consensus has emerged of a precise definition of
ambiguity. Partly, this stems from the variety of circumstances in which
different notions of ambiguity seem suitable. For instance, the credibility
of a source of information, or the degree of disagreement between multiple
sources, such as expert witnesses, captures one notion of ambiguity (Ein-
horn and Hogarth, 1985). Ambiguity may also represent uncertainty about
probability stemming from information which could be known, but is not
(Frisch and Baron, 1988). True subjectivists may reject the notion of am-
biguity altogether, since all subjective probability distributions are equally
well known to ourselves (deFinetti, 1977).

The notion of ambiguity considered here is based on second order prob-
abilities. A second order probability is the distribution of possible distribu-
tions. In the Ellsberg problem, the second order probability is the proba-
bility distribution over the number of black balls in the urn. Second order
probability is also commonly encountered as statistical confidence. Con-
sider, for instance, two coins, one which has been flipped twice yielding one
head and one tail and another which has been flipped 1000 times, yielding
500 heads and 500 tails. Both coins have P(heads)=0.5, but the coin with
more flips has a lower-variance second order probability.

This approach is not without its drawbacks. There is some evidence that
agents prefer known second order probabilities to unknown second order
probabilities (Yates and Zukowski, 1976), suggesting third order probabili-
ties may also affect ambiguity. Also, if people have difficulty understanding
second order probabilities, then higher order probabilities are probably more



difficult to consider.

In bandits, however, the second order probability is a natural interpreta-
tion of ambiguity because there is a unique, known second order probability,
G. In some applications, it may be difficult to argue that this probability
is in fact known, but for the abstract version of the problem that can be
tested in the laboratory, a sensible definition of ambiguity can be based on
the variance of G.

This representation of ambiguity draws a distinction between ambiguity
and risk. Following Anscombe and Aumann (1963), the following formal
notions of risk and ambiguity will be used.

Definition 2 An arm F is riskier than an arm F' if the variance of Q is
greater than the variance of Q'.

Therefore, agents who are risk aversion mind only variance in their payoff
distribution. This variance is independent of the variance of the distribution
of means of the payoff distributions.

Definition 3 An arm F is more ambiguous than an arm F' if the vari-
ance of G s greater than the variance of G'.

Therefore, agents who are ambiguity averse do not like the variance in the
distribution from which the means of the payoff distributions are drawn.
Although this may not be intuitively distinct from variance in the pay-
off distribution (especially if, as a good economist, you reduce compound
lotteries), ambiguity aversion and risk aversion are only weakly correlated
within individuals (Hogarth and Einhorn, 1990).

4.1 Models of Ambiguity Aversion

Models of ambiguity aversion fall into three categories, those which lever-
age unique second order probabilities (and relax reduction of compound
lotteries), those which allow multiple probabilities, and those which rely on
nonadditive probabilities. Nonadditive probability models (e.g., Schmeidler,
1989) do not require that the subjective probabilities of an event in a set
which will occur with objective probability one sum to one. Therefore, if an
outcome will be either A or B, then P(A) + P(B) does not have to equal
one. Therefore, ambiguity aversion is represented because, when computing
expected payoffs using the subjective probabilities, not all the probability
weight will be represented. The remaining probability, 1 — P(A) — P(B), is
a measure of faith in the the evidence on which agents’ beliefs are based.

10



Another way to think about ambiguity is to consider independently the
set of possible payoff distributions without reference to a second order prob-
ability which generates them. There are a variety of ways that agents may
use these multiple probabilities to decide among actions. Many of these
models suggest agents use a minimax decision rule (e.g., Gilboa and Schmei-
dler, 1989). Ambiguity aversion arises in these models as agents may have
multiple probabilities and pessimistically evaluate each lottery using the
probability which generates the lowest expected utility.

Given that bandits provide a known, unique second order probability,
and the definition of ambiguity is based on a second order probability, the
most natural set of models to apply are those using second order probabil-
ities. These models relax the assumption of reduction of compound lotter-
ies implied by subjective expected utility theories by applying a nonlinear
weighting function to transform the second order probability distribution
before computing an expectation. When the nonlinear weighting rule moves
decision weight from high values to low values, agents will be ambiguity
averse.

To formalize the notion of second order probabilities, let F' be a distribu-
tion with a parameter 6, where F'() is the probability the agent will receive
some prize X. Let 6 have a second order distribution G, and let § be the
expected value of 6.

Ambiguity attitudes are represented by a decision weighting function
w(X), which gives the expected utility from winning the prize X, adjusting
for the ambiguity associated with selecting an ambiguous lottery. Using this,
ambiguity aversion can be formally defined.

Definition 4 An agent’s decision weighting function w(X) is ambiguity
averse if Elw(X)|F] < E[X|F)].

Formally, ambiguity aversion occurs when the value of a choice given its
ambiguity is less than its expected value. Typically, w(X) is decreasing in
the variance of G.

Several forms for the function w(X) have been proposed. The next two
sections discuss two of them. The first discusses a model by Segal (1987),
who proposes a broad class of functions which could represent ambiguity
aversion. The second presents a specific function used by Kahn and Sarin
(1988).

11



4.1.1 Segal

One model of ambiguity aversion was developed by Segal (1987), based on
an anticipated utility model developed by Quiggan (1982) and others. If the
state probabilities are ordered such that p; < p2 < ..., then

m

W = u(z)(61) +u(z) Y _[f(6:) — f(Bi-1)]f (D p(65))- (6)

1=2 j=t

Segal shows that if f(0) = 0, f(1) = 1 and f(-) satisfies a condition
called nondecreasing elasticity (a slightly stronger form of convexity), then
E[w(X)|F] < E[X|F], or agents are ambiguity averse.

4.1.2 Kahn and Sarin

Kahn and Sarin (1988) propose a specific form for w(X):

w(X) = u(z)d + u(z) /6 10(0 — 0)el=¢0=0/73c(6)do (7)

where o = \/felzo(ﬁ — 0)2dG(0)d# is that standard deviation of the second
order probability distribution, and @ is the expected value of .

If ¢ # 0, then (9 —0) is the scale of the impact of the ambiguity. If £ > 0,
the second order probabilities are adjusted by underweighting the chance of
higher than average 0s and overweighting the probabilities of lower than
average 0s, leading to ambiguity aversion. A negative ¢ does the opposite,
representing ambiguity preference. Since it captures attitudes toward ambi-
guity, £ is a characteristic of the individual, and therefore a primitive of the
model.

The decision weighting function can be interpreted as an expectation,
where fu(z) is the expected utility of the choice and the u(x) times the
integral is the psychological cost (or reward) associated with making an
ambiguous choice. This interpretation requires that the cost be incurred
when the choice is made, so it is subtracted from any outcome realized.

5 The Gittins Index of Ambiguity Averse Agents

Ambiguity aversion may play an intuitive role in bandit problems. Agents
may dislike trying alternatives about which they have less information be-
cause they do not know the mean of the payoff distribution; the larger the
variance of possible means, the more they dislike unknown alternatives. This

12



attitude could lead to underexperimentation, as agents avoid ambiguous al-
ternatives, and lower than optimal Gittins indexes.

This section formalizes this intuition and develops some theory on how
ambiguity aversion affects behavior in bandits. It proves that a Gittins
index exists, and that a two-armed bandit with one arm known is a stopping
problem for the ambiguity averse agent. These results form the foundation
for extending Kahn and Sarin’s model of ambiguity aversion to Bernoulli
arms with beta priors.

5.1 Bayes Rule and Reduction of Compound Lotteries

Extending ambiguity aversion to bandit problems requires some interpreta-
tion because these models have, in the past, applied only to choices among
compound lotteries. Models which leverage second order probabilities as-
sume that, in computing their expected payoffs, agents do not use Bayes rule
to reduce compound lotteries; they use some other function which expresses
their ambiguity aversion.

In bandits, however, ambiguity neutral agents apply Bayes rule not only
to reduce compound lotteries to compute their expected payoff, but also to
update their priors over the parameters of the payoff distribution and to
compute the probabilities of continuations. How to best extend models of
choice among compound lotteries to bandits depends on whether ambiguity
aversion is the product of a fundamental problem in applying Bayes rule, or
whether it is some other phenomenon which is well modeled by using some
substitute for Bayes rule.

I am not aware of any evidence on either side of this question. How-
ever, for purposes of this paper, I will assume that agents understand and
use Bayes rule to update their prior beliefs and to compute continuation
probabilities. Therefore, it is only the act of computing an expected value,
considering payoffs themselves, in the context of ambiguity which leads to
non-Bayesian behavior.

To emphasize this distinction, I will use E[w(X)|F] to indicate an ex-
pected payoff adjusted for ambiguity. Probabilities will be denoted P(X =
1|F), and are not affected by the agents’ ambiguity attitudes. To indi-
cate that a given arm is being evaluated by an ambiguity averse agent, its
payoff distribution will be written F,,. However, because probabilities are
unaffected by ambiguity attitudes this does not correspond to a different
distribution. Further, because Bayes rule is applied properly in updating
prior beliefs, (X)F,, reflects that F' has been updated to reflect X prior to
being evaluated under the ambiguity attitude represented in w(-).

13



5.2 Existence of a Dynamic Allocation Index

Before developing a specific model of ambiguity aversion in bandits, I prove
that a Gittins index exists for ambiguity averse agents.

Theorem 1 For each nonincreasing discount sequence A with A # 0 and
each distribution F' on D, there ezists a unique function A(F,,, A) such that
the F' arm is optimal initially in the (F,, \; A) bandit if and only if A <
A(F,, A) and the X arm is optimal initially if and only if X > A(F,, A).

This proof follows the proof of existence of a Gittins index for hyperbolic
discounters. First, it is necessary to prove some preliminary results about
V(F,,A\; A) and A(F,, \; A).

Lemma 1 For all F and for all A, V(F,,\;A) is continuous and nonde-
creasing in A.

An increase in A can affect the value function in two ways: it increases

the value of arm A\ whenever it is chosen, and it expands the set of F' over
which the optimal strategy prescribes the A arm to include those of higher
expected value. Given this, an increase in A could not result in a reduction
of the value function because an increase in the value function never makes
it more likely F' will be chosen, and it strictly increases the value of any
choice of the A arm.
Proof: Suppose \* > X and ¢ is optimal in the (F,, \; A) bandit. Suppose
o is followed in the (F,, A\*; A) bandit. The only change compared with
(Fy,A; A) is when arm 2 is selected and A\* is received instead of .

Therefore,

V(Fu, N A) = W(F,, X 4;0) (8)
< W(Fy,, X5 450) =V(F,, A5 A)

—~
=)
~—

Therefore, V(F,, A; A) is nondecreasing in A.

For continuity, let ¢* be optimal for the (F,, A*; A). Then the only
difference between W (F,,, A; A;0*) and W (F,,, \*; A; o) is the result of arm
2 when it is chosen.

V(Fwa)‘*§A) = W(Fwa)‘*;A) (10)
< W(E,A 407+ (A = M) (11)
< V(Fg, M A) + (0 =My (12)

14



Since Equation 9 proved V(F,,\; A) < V(F,,A*; A), this implies that
this relationship must approach equality as A* — A. Therefore, V (-, A; A) is
continuous in A. ©

In order to show a dynamic allocation index exists, I also need a result
showing how the size of the error made by choosing the the wrong arm
varies with A. Define the function A(F,,, A; A) as the difference in the value
functions from choosing the F' arm first and then continuing optimally and
choosing the A arm first and then continuing optimally;

The absolute value of this quantity can be thought of as the cost of making
an error by selecting the wrong arm initially. This quantity turns out to be
very important, as the following lemma does most of the work in proving
Theorem 1.

Lemma 2 For any F on D, A(F,, \; A) is decreasing in A\ when A is non-
increasing with A # 0.

Proof: Fix \* > A

This proof proceeds in three parts. Part (i) derives an expression for
A(F,,  \*; A) — A(F,,\; A). Part (ii) performs a finite induction on the
horizon to establish that A(F,, \*; A) — A(F,, A; A) is negative. Part (iii)
extends the result of Part (ii) to infinite horizons.
(i) The value of choosing the F' arm first and then proceeding optimally is
given by

VE(F,, X A) = s E[w(X)|F] + E[V((X)F,, ;; AD)]. (14)

Similarly, the value of selecting the A and then continuing optimally is given
by
VMNE, A A) = g + V(F,, A AD). (15)
Now define two more functions, which will prove to be of considerable al-
gebraic convenience. AT (F,, \; A) = max[0, A(F,,\; A)] and A~ (F,, \; A) =
max[0, —A(F,, A; A)] so that

VE(F,, N A) = V(F,, N A) — A (F,, )\ A) (16)
V)\(FUMA’ A) = V(FDJa)\a A) - A+(FUJ7)\7A) (17)

Mnemonically, A~ is nonzero when A(F,,, A\; A) is negative, or when ) is the
optimal arm.
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Using these definitions, substitute for V((X)F,,\; A) and V(F,, \; A)
in Equations 14 and 15 above. This gives

VE(F, A 4) = aiBw(X)|F] + BVA(X)Fo, A AD) + AY((X)Fo, X; A(18)]
VMFLAA) = agh+ VI(E, N AD) 4 A=(F,, A AD), (19)

These expressions can then be used to compute A(F,,, \; A). The first two
terms in Equation 18 represent the value of selecting arm F' in the first
period, arm A in the second and then continuing optimally. Similarly, the
first two terms in Equation 19 represent the value of selecting arm ) in the
first period, arm F' in the second and then continuing optimally. Given this
interpretation, subtracting the first two terms in Equation 19 from those in
Equation 18 gives (a1 — ag)[E[w(X)|F] — A]. This gives

A(Fu, A A) = (01— ) [E[w(X)| Fl-N+E[AT (X)F,, X AD) A7 (F,, A AD).

(20)
Using this expression to compute A(F,,, \*; A) — A(F,,, \; A) gives
A(F,, N5 A) — A(Fy, 5 A) = (a1 — ag)[A — )\*] +
E[AT ((X)Fo, X5 AD) = A*((X) Fop, A AW)] +
A_(FW7/\;A( ))_A (FLUa/\*7A(1))' (21)

(ii) Proving the lemma requires that the difference in Equation 21 be neg-
ative. This section performs induction on a finite horizon to demonstrate
that this is true.

Let A, be a nonincreasing discount sequence with finite horizon n, so
elements after the n'* are zero.

First, suppose n = 1. Then, for all Ay, A(F,,\*; A1) — A(F,, \; Aq) is
negative implies

Elw(X)|F] = A" < Elw(X)|F] -
AT > (22)
which is true by assumption.

Now suppose that the horizon n > 1 and A(F,, \*; 4,) < A(F,, \; 4y)
for any nonincreasing A,. Now I will use this induction hypothesis to show
that A(F,, A5 Apy1) < A(Fu, A\ Apy1).

Equation 21 can be rewritten with the truncated discount sequence

A(Fu, A5 Apt1) — A(F, A Apgr) = (a1 — a2)[A = M) +
w401
BIAT((X)Fa, N5 AL = AT (0 Fo X AL +

A~ (Fy AN ) = A= (F,, 27 AU, (23)
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The first term on the righthand side of Equation 23 is nonpositive be-
cause \* > X by assumption and a1 > ao by hypothesis.
The remaining terms are negative for similar reasons. Consider the sec-
ond term. Since Ag_l is nonincreasing and has horizon n, we have
BIAT(X)Fa, N5 AL = AT((X) Foy X5 A7)
= E[max[0, A((X)Fo, A"; An)] — max[0, A((X)Fu, A; An)])- (24)

The induction hypothesis gives that A(F,,, \*; 4,,) < A(F,, \; A,) for all F,
in particular o F. Therefore, the second term in Equation 24 is always larger
than the first, implying that the second term in Equation 23 is negative.

Consider the third term. Since A(l)1 is nonincreasing and has horizon

n+
n, we have
A (Fy, A Ang—?—l) — AT (Fy, A Agﬂ)
= max[0, —A(F,, \; 4,,)] — max[0, —A(F,, \*; A,)]- (25)

The induction hypothesis gives that A(F,, \*; A4,) < A(F,, A\; Ay,). There-
fore, the second term in Equation 25 is always larger than the first, implying
that the third term in Equation 23 is negative.

Since the first term in Equation 23 is nonpositive and the other two
are strictly negative, the difference Equation 21 is negative for every finite
horizon. Now we let the horizon go to infinity to show it is negative for
infinite horizons.

(iii) Suppose n = co. Let A7 denote the truncation of Ay, at finite 7', so Ap
coincides with A, up to time 7" and has zeros afterwards. Letting 7" — oo
in the result from Part (ii) gives

Since A = Ay, we have A(F,,, \*; A) < A(F,,, \; A) for all horizons. This is
sufficient to prove the lemma. ©

Given this result, the existence of a dynamic allocation index is easy to
prove.
Proof of Theorem 1: This proof begins by defining A(F,,, A) = inf{\ € D :
the A arm is optimal for the (F,,\; A) bandit }. Then I show that this
definition implies that F' is uniquely optimal if A\ < A(F,,, A). Then I use
Lemma 2 to show that A is uniquely optimal if A > A(F,, A). Indifference
at A = A(F,,, A) then follows from the continuity of V.

For A < A(F,, A), we have

VE(F,, A A) > VAF,, X A) (27)
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from the definition of A(F,, A). Because A(F,,, A) is the infimum value of A
for which X is optimal, it must be that F' is uniquely optimal.

The case where A > A(F,, A) is a little harder because there may be
values of A\ above A(F,, A) where F is optimal. However, the fact that
A(F,, \; A) is strictly decreasing in A, as shown in Lemma 2, proves that
this cannot be. Therefore

VE(Fy, N A) < VME,, X A) (28)

for all A > A(F,,, A)and X is uniquely optimal.

Finally, if A = A(F,,, A), we have that neither F' nor X is uniquely opti-
mal. Extending the continuity of V(F,,, \; A) to VX (F,, \; A) and V' (F,,, \; A),
the previous cases sandwich possible values of VA(F,,, \; A) and VI (F,, \; A)
to give

VF(FwaA(FwaA)§A) :V)\(FwaA(FwaA)§A)a (29)

which is equivalent to both arms being optimal initially for the (F,,, A(F,, A); A)
bandit.Q
5.3 The Stopping Property

The index will be much easier to compute and discuss theoretically if ambi-
guity averse agents’ strategies satisfy the stopping property.

Theorem 2 If A is nonincreasing, then for every (F,,A; A) bandit, there
is an optimal strategy for which every selection of X\ is followed by another
selection of .

First, I need a result which indicates when A will never be optimal.
Lemma 3 If E[w(X)|F] > A, then the F arm is optimal for any A.

Proof: Suppose that o is an optimal strategy for the (F,, \; A1) bandit.

Let o* be a strategy which indicates the F' arm initially and then follows o,
ignoring the initial realization from F. Then

W(Fs X A50%) = aaBlw(X)|F]+V(Fy, x5 AD) (30)

> A+ V(Fy, 5 AD) = W(F,, X 4i02) (1)

where 05 is a strategy which chooses ) initially and then proceeds optimally.
Since there is a strategy which starts with the F' arm and is least as good
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as the optimal strategy which starts with the A arm, the F' arm is optimal.
Y%

Proof of Theorem 2: Let A,, denote a nonincreasing discount sequence with
horizon n. The proof is by induction on the horizon.

If n = 1, then the proposition is trivially true since there is no further
selection of either arm.

Suppose n > 2 and for every (F,, \; A,_1) bandit, there is an optimal
strategy for which every selection of A is followed by another selection of .
Then Asll) € A,_1.

Assume it is optimal to select F' initially. Then the inductive hypothesis
shows that there exists a continuation which never switches back to F' after
its first selection of .

On the other hand, if it is optimal to select A initially, the inductive
hypothesis applies trivially unless there is an optimal strategy ¢* which
indicates a selection of A, then selects F' at stages 2... N, and then X there-
after. This might be the case if I were indifferent at time 1 and returned
to indifference after several selection of F'. I will now show such a strategy
cannot be better than a strategy which never switches back to F'.

Since the value of A is known, we can assume that ¢* does not depend
on the initial observation from A. So for each m, {N > m} is measurable
with respect to the o-field generated on the outcomes (Xo, ..., Xy,).

Lemma 3 implies that if the sequence of outcomes through time m con-
tains s successes and f = m — s — 1 failures while following ¢*, then

N =m= E[X|0c*¢'F,] < X (32)

This condition says that if A is going to be selected in the current period,
then the sequence of successes and failures must be such that it is no longer
optimal to select F'. This bound comes from Lemma 3.

Now I will show that there is a strategy o which starts with F' and is at
least as good as o*. Let o select F initially and then imitate ¢* by selecting
the arm prescribed by ¢* one period earlier.

N 00
W(Fu, X A;0") = B |aad+ ) w(Xm)am + A DY apl|F (33)
m=2 m=N+1

which must best at least y1 A since ¢* is optimal. Therefore,
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o] N

Y Eo [(w(Xm) = N{N > m}|F] am = Eo- [Z (W(Xm) = Nam|F| =0

m=2 m=2
(34)

The value under o is given by
N e8]
W(F,,\;4;0) = E, Z w(Xm)om -1+ A Z 1| F (35)
m=2 m=N-+1

The stopping strategy o is better if the difference in these worths is
positive.

W(E,,\;A;0)—W(F,,\; A;0™) = i Ep [(w(Xm) — NI{N > m}|F] (tm-—1—0m)
m=2

(36)

The term (-1 — ap) is weakly positive because A, is nonincreasing.

The expectation weakly is positive because E[w(X,,)|F] < A by Lemma 3.

Therefore, there is a strategy which satisfies the stopping property and
which is at least as good as the optimal strategy.©

6 Bandits with Kahn-Sarin Ambiguity Averse Agents

This section establishes properties of the behavior of ambiguity averse agents
in bandit problems. The analysis here is restricted to the case of a Bernoulli
arm whose parameter has a known beta(a, 8) distribution.

The primary concern of this section is that adding the dynamic element
of probability updating to the ambiguous choice problem does not affect
the way the model represents ambiguity aversion. It is not obvious from
Kahn and Sarin’s paper that, when an agent acquires more information
about an ambiguous alternative, & > 0 will still lead to an w(-) which is
ambiguity averse. As it turns out, we do not need to be concerned that we
will observe some sequence of successes and failures for which the Kahn-
Sarin transformation will result in behavior other than ambiguity aversion.

Theorem 3 Let F be the distribution of the parameter of a Bernoulli arm
with a beta(a, B) prior. If & is positive, then the Kahn-Sarin agent will be
ambiguity averse for all informative priors (o > 0 and 5 > 0).
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The proof of this theorem reduces the problem to a difference between
two Kummer’s functions, or confluent hypergeometric functions of the first
kind. (Spanier and Oldham, 1987; Abramowitz and Stegun, 1972) This
function is

Fi(ab,2) = — ) / Lestgam1(q _ gypma-igy, (37)

I'(b—a)l(a) Jo
Kummer’s function has many uses in theoretical physics, and it provides
one class of solutions to Kummer’s confluent hypergeometric differential
equation, zy” + (b — 2z)y’ — ay = 0 with initial conditions 1F}(a,b,0) = 1
and % 1Fi(a,b,z)|,—0 = a/b. There is no obvious relationship between its
physical interpretation and its appearance in a model of ambiguity aversion;
it is used here because existing results about Kummer’s function simplify
proof of Theorem 3.

Before proving Theorem 3, it is necessary to prove a property of Kum-
mer’s function.

Lemma 4 Kummer’s confluent hypergeometric function has the property
that 1F1(a +1,b+ 1,2) —1 Fi(a,b, z) is strictly negative for all b > a > 0
and z < 0.

Proof: Kummer’s first theorem allows z < 0 to be transformed into z > 0.
Then Kummer’s function can be related to an Euler beta function, which
provides a closed-form solution to the definite integral in 1 Fi(-,-,2). The
closed-form solution can be manipulated to demonstrate that each term in
the summation in the Euler beta function is strictly negative.

To keep track of the sign of z, let z_ denote z < 0, and 2z, = —z_
denote z > 0. Kummer’s first theorem (Slater, 1960, p. 6) holds that
1Fi(a,b,z) = € 1F1(b— a,b, —2) for all z. Therefore,

1F1(G/,b,2_) = €~ 1F1(b—a,b,z+) (38)
1Fila+1,b6+1,2.) = e 1Fi(b—a,b+1,2;). (39)

The difference then reduces to

I'(b)e*- [ /1 tay b—a—1 -1
N Z a 1— a _ 24 a 1— a .
T =T [ / ez b=a=1(1 _ p)aqy ez h=a=1(1 — p)a-lgy

a Jo 0
(40)
The exponential term in the integral can be broken into its representation
as an infinite sum (Slater, 1960, p. 34), yielding

I'(b)e*~ b1 —a—14n a
e [5/0 3 S
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1 o 2N
_/ Z _-I'-tb—a—l—f—n(l - t)a—ldt] ) (41)
Up— n:

The terms which depend on z; can be moved out of the integral, and
the difference can be written

L(b)e*~ X 2% [f1/b . -
T ot fy (00 1) a0 e

The integral is a (difference of) Euler beta functions, and its solution can
therefore be represented in terms of gamma functions. The integral equals
(b-a)l(b+1+n)l(b-—a+n)-bl(b+n)I(b-a+1+n

al'(b+n)T'(b+1+n) '

=

= T'(a)
I'(a)T(b—a+n)

3)

= ab+ W0+ 1) [(b—a)(b+n)—bb—a+n) (44)
B F(a)T'(b—a+n)
_ana(b+ n)T'(b+n) (45)
The entire difference can be represented as
r'(b)e*- X 2% nl(a)T(b—a+n)
“Tl—aT(@ 2 0l b+ n)G+n) (46)

Since b > 0, a > 0, b—a > 0 and n > 0, every gamma function in this
expression is strictly positive. Similarly, z; > 0, so every power of z; is
strictly positive also. Therefore, every term in the infinite sum is strictly
positive. Additionally, e*~ > 0 is strictly positive. Therefore, the entire
difference is negative for any b > a > 0. O

The proof that z > 0 leads to a positive difference (and ultimately
ambiguity-seeking behavior) follows along similar lines. However, the ap-
plication of Kummer’s First Theorem is not necessary because all powers of
z are positive, without needing to change its sign.

I can now prove the main result.
Proof of Theorem 8: This proof manipulates the Kahn-Sarin model of ambi-
guity aversion with a beta distribution (the conjugate prior for the Bernoulli
distribution). The ambiguity term in the decision weight expression is shown
to be proportional to the difference between two confluent hypergeometric
functions of the first kind. Lemma 4 proves this difference is strictly nega-
tive, implying ambiguity aversion.
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The Kahn-Sarin model holds that agents make choices based on a deci-
sion weight equal to

5 ! 50—y /o L(a+PB) 1o -1
Elw(z)|e, =0+/ 0 — §)e=€0-0/0 2T g1y pi8-149 (47
w@)lasl =0+ [ (0-0) (R ()
where 6 = aaT,B is the expected value of z and o = (a+ﬂ)aai[3+1) is the

standard deviation of x.
Ambiguity aversion holds when Flw(z)|a, 8] < E[z|a, 8]. This is equiv-
alent to showing that the integral is strictly negative. Evaluating it gives

1
I'(a)L(B)
~ T()T(B)8e/” 1Fi(a, 0+ B, ~£/0)]
_ etl/o [ I'a+1)
I'(a) [T(a+B+1)
0T ()

- m 1Fi(o,a + B8,-¢/0)

Applying the fact that I'(k+1) = kT'(k) on the numerator and denominator

of the left-hand term gives
Fla+1) ol () IN()!

—7 .
Fla+p+1) (a+B)T(a+p) T(a+p)
The integral therefore evaluates to
fec0/o
I'(a+ pB)
Since the coefficient is positive under the assumptions of the theorem, the
sign of the integral is determined by the sign of the difference between the
Kummer’s functions. Lemma 4 proves that this difference is strictly nega-

tive. Therefore, the value of the integral is strictly negative, and Ew(z)|a, ] <
E[z|a, B], which proves the claim. ©

[P(a+D)D(B)e? 1 Fi(a+1,0+ B+1,-¢/0)

1Fi(a+1,a+B8+1,-¢/0)

(48)

(49)

[1F1(Oé+1,0&+,8+1,—£/0)— 1F1(0&,Oé+ﬁ,—£/0')]- (50)

Corollary 1 Kahn-Sarin ambiguity aversion is preserved under all possible
sequences of successes and failures.

Bayes rule prescribes that the posterior of a beta distribution with Bernoulli
observations is given by beta(a + s, + f) after observing s successes and
f failures. Since s > 0and f >0,d =a+s>0and g/ =8+ f > 0.
Therefore, Theorem 3 applies with beta(a/, 5). ©
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6.1 The Gittins Index of an Ambiguity Averse Agent

For ambiguity aversion to be a descriptive model of behavior, it should
predict the lower-than-optimal Gittins indexes observed.

Theorem 4 Suppose A is reqular with ay > 0 and F,, is the ambiguity-
aversion adjusted version of F. Then A(F,A) > A(F,, A).

Before proving this directly, we need a result about the impact of ambi-
guity aversion on the value function.

Lemma 5 Suppose F is a Bernoulli arm and the agent is ambiguity averse.
Then
V(F, X A) > V(Fy, A A) (51)

for all A.

Proof: This proof proceeds by induction on the horizon.
Suppose the horizon of A is zero. Then

V(F, X Ao) = V(Fu, A; Ag) = 0 (52)

because neither arm is ever selected and no reward is received.

For any n > 1, assume that V(F,\; Ay,) > V(F,, \; A,,) for any F satis-
fying the conditions of the proposition and for any A with horizon less than
n.

Suppose the horizon of A is n, and 7 is an optimal strategy in the
(F,, A; An) bandit. Let 7" have the same first selection as 7 and then proceed
optimally in the (F, \; A,,) bandit.

It is sufficient to show that

W(F, X Ap; ') > V(E,, X Ay). (53)

Without loss of generality, assume that the first move under both 7 and 7/
is arm 1. Then

W(F, X An; ™) = aiE[X|F]+ P(X = 1|F)V(oF,\; A)
+ P(X = 0|F)V(¢F,x; AD)
V(F,, X\ A4,) = oqEw(X)|F]+P(X =1|F)V(cF,, ) AD)
+ P(X = 0|F)V (¢F,, x; AD). (54)
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Note that the probabilities E[X|F] in the second equation are not trans-
formed by the ambiguity function; the agent understands the probabilities,
but does not like the uncertainty they imply for her payoffs.

W(F, s A Tl) - V(Fwa A An)
= a1 [E[X|F] - Elw(X)|F,]]
+ P(X = 1[F) [V(oF, X AD) = V(0 F,, X AD))|
A

n

+ P(X = 0|F) [V(¢F, X ADP) = V(¢Fo, X AD))]

The first term is nonnegative because w() represents ambiguity aversion.

The second term is nonnegative because the induction hypothesis applies
to any F, in particular ¢F. The third term is nonnegative because the
induction hypothesis applies to any F', in particular ¢F'.

Therefore, the difference is nonnegative, so the claim is proven. ©
Proof of Theorem 4: This proof is by contradiction.

Suppose A(F,A) < A(F,,A). Then arm 1 is optimal initially in the
(F,A(F,A); A) and (F,,A(F, A); A) bandits. Then

V(F,A(F, A); A) = V(F,,, A(F, A); A)
= o [E[X|F] - Blw(X)|F]]
+ P(X = 1|F) [V(oF, A(F, A); AD) — V(0 F,,, A(F, A); AV)]

+ P(X = 0|F) [V (¢F, A(F, A); AD) — V(¢F,,, A(F, A); AD)| (55)

The first term is nonnegative by the definition of ambiguity aversion. The
second and third terms are each positive by the proposition above.

However, we also know that the strategy using arm 2 at every stage is
optimal for the (F, A(F, A); A) bandit. Therefore

V(F,A(F, A); A) = V(Eu, A(F, A); A) = mA(F, A) = V(F,, A(F, A);(46)
< 0

The inequality follows because A(F, A) < A(F,, A) implies that arm 2 can-
not be the optimal choice in the first period of the (F,, A(F, A); A) bandit.
Therefore, the value of the (F,, A(F, A); A) bandit must be strictly greater
than y1 A(F, A) (arrived at through some strategy which selects arm 1 ini-
tially). However, Equation 56 being negative contradicts Equation 55 being
positive. Therefore, it cannot be that A(F, A) < A(F,, A). ©
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6.2 Willingness to Pay for Information About the True Av-
erage Payoff of an Ambiguous Arm

Theorem 5 If A is reqular, an ambiguity averse agent will pay more to
learn the value of the parameter 0 than an optimal agent.

Proof: This proof calculates the value of learning the value of § and demon-
strates that it is increasing in A. The result follows from Theorem 4 which
demonstrates that A(F, A) > A(F,, A).

Because A is regular, the value of playing an uncertain bandit is given
by 'YIA(F ) A)

If agents knew the value of 8, they would select the arm yielding A(F, A)
if § < A(F,A), and the arm yielding 6 otherwise. This yields a payoff of

A(F,A) 1
o’ l /0 A(F, A)dF(6) + /A o 0dF(0)] . (57)

The value of knowing 6, or the amount the agent would be willing to pay to
learn 6, is given by

A(F,A) 1
" l /0 A(F, A)dF(6) + HdF(O)] — v A(F, A)

A(F,A)

A(F,A) 1
-y l /0 A(F, A)dF (6) + /A - 0dF(9)]

A(F,A) 1
| [ 2 rar0) +
0

— [ 0= AF ANaF ).
A(F,A)

A(F, A)dF(O)]
A(F,A)

This expression is positive since (8 — A(F, A)) > 0 at every point in the
range of integration. It is zero only if A(F, A) = 1.

It remains to show that this value is decreasing in A\. Now suppose
A* > A. This will show that changing from A* to A results in an increase in
the value of learning 6.

At \*, the value of learning @ is

n [0~ X)aF(@) 9

A smaller index has two effects on this quantity. First, it extends the
range of the integral to the range of A < 6 < A*. Second, it increases the
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integrand by increasing the difference. The value of learning 6 under A can
be written

1

A A*

Both of the new terms are positive, indicating that the value is decreasing
in A

Since A(F, A) > A(F,, A), the ambiguity averse agent will be willing to
pay more for information about the value of §. ©

The result of this theorem provides a surprising contrast to Theorem
4. Because agents are willing to pay more than optimal to learn about the
value of 0, it appears that they overvalue information. On the other hand,
because their Gittins index is lower than optimal, ambiguity averse agents
appear to undervalue information.

This paradox does not arise in the other models studied. Ambiguity
averse agents value the counterfactual universe where they know 6 without
ambiguity aversion; agents who are hyperbolic discounters, or who cannot
properly solve the dynamic programming problem, will bring these sub-
optimalities to the counterfactual calculation. Therefore, this surprising
prediction of ambiguity aversion is excellent grounds for testing the model.

A slightly different result is needed to test this prediction in an exper-
iment. Because I do not know the agents Gittins indexes, I cannot set
the value of the second arm at the value that makes the agent indifferent.
However, Theorem 5 can be generalized.

Theorem 6 An ambiguity averse agent will pay more than an ambiguity
neutral agent for information about the true value of 0 in the (F,\; A) for
any X. If A < A(F, A), the ambiguity averse agent will pay strictly more.

Proof: If the agent knows 6, then her expected payoff will be v, max[6, \]
because the agent will simply select whichever arm gives the higher payoff.
If the agent does not know 6, she computes a Gittins index A(F., A)
(where F. is either F' or F,). Then she expects to receive V(F., \; A) if
A< A(F,A) and mAif A > A(F,A).
Given that max[f, A] can be written as in Equation 57, the agents should
be willing to pay

" l /0 " \F() + /A " 9ar (o) — )\] (60)
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if A > A(-, A), and

" l /0 " \F©) + /A 1 GdF(G)] _V(F,\; A) (61)

if A < A(-, A).

There are three cases to consider.

(i) If A < A(F,,A) < A(F,A), then both an ambiguity averse and an
ambiguity neutral agent will select F' in the first period, and Equation 61
applies. Lemma 5 shows V(F,, \; A) < V(F, \; A), so Equation 61 will be
larger for the ambiguity averse agent.

(ii) If A(F,,A) < A(F,A) < A, then it is optimal for both agents to
select A in the first period (and indefinitely), so they will both determine
the value of learning 6 using Equation 60. This value does not depend on
attitude toward ambiguity, so both agents will pay the same amount.

(iii) If A(F,,A) < XA < A(F,A), then the ambiguity averse agent will
select A in the first period and determine the value of learning 6 using
Equation 60, but the ambiguity neutral agent will select F' in the first period
and determine the value of learning 6 using Equation 61.

For any F and any value of A, Equation 60 is larger than Equation 61.
Subtracting Equation 61 from Equation 60 yields

V(V, A A) —mA > 0. (62)

Positivity follows because the fact that an agent is using Equation 61 implies
F' is the optimal first period choice, and for this to be the case, it must
allow the agent to do better than y; A. Therefore, Equation 60 is larger than
Equation 61, and the ambiguity averse agent will pay more to learn 6.

Note that the ambiguity averse agent will pay strictly more in cases (i)
and (iii), and exactly the same in case (ii).

7 Experimental Design

Testing the prediction that agents with suboptimal indexes will pay more
than optimal for initial information about an ambiguous arm requires two
treatments: one to determine a Gittins index, and the second to determine
the subject’s willingness to pay for information about the value of an am-
biguous arm.

In each treatment, subjects will play six bandits in a random order.
Each bandit will have a known, fixed horizon and no induced discounting.
Each bandit will have two arms, one with an unknown (ambiguous) average
payoff, and one with a known (unambiguous) average payoff.
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Prior Prior Prior Gittins  Optimal
(o,8) Mean Std Periods Index  WTP

A (1,1) 050 0.29 4 0.62 0.25
B (2.525) 050 0.20 4 0.56 0.21
C (1.1,39) 022 017 8 0.31 0.06
D (391.1) 078 0.17 5 0.83 0.04
E (23) 040 020 5 0.47 0.21
F (32 060 020 8 0.69 0.24

Table 1: Properties of the six unknown arms used in the experiment

7.1 Ambiguous Arms

In each treatment, subjects may choose to receive payoffs from a Bernoulli
arm with an unknown (ambiguous) probability of paying off. The proba-
bility of payoff (the parameter of the Bernoulli distribution) is distributed
beta(w, 3), where « and 3 are known parameters. This probability is repre-
sented to subjects in terms of balls and urns. They are told that they are
choosing between urns (arms) which contain 100 balls in some combination
of red and white. When they choose an urn, one ball is drawn at random
from the urn, and they earn $1 if the ball is red and nothing if it is white.
The different priors are related using tables which give the chance that there
are exactly (PDF) and less than (CDF) each possible number of red balls in
the unknown urn.

In separate treatments, subjects play each of six bandits with the char-
acteristics represented in Table 1. These bandits were chosen to allow direct
testing for three possible effects: a mean effect, a variance effect and a length
effect. Bandits A and B have the same mean and same length but different
variances, so their data can be compared to discover the impact of a change
in variance. Bandits C and D (and E and F) have the same variance, but
different means and different numbers of periods. A mean effect can be
tested by comparing data from bandits C and E (which have means below
0.5) with that from bandits D and F (which have means above 0.5). On
average, these pooled data will have the same number of periods, and the
same variance. A length effect can be tested by comparing the data from
bandits C and F (which have length 8) and D and E (which have length
5). On average, these pooled data will have the same means and the same
variance. If more than one of these effects is present, standard statistical
techniques can be used to control for confounding effects.

The instructions used in each treatment are in Appendix A.
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7.2 Gittins Index Treatment

In the Gittins index treatment, the subject is given the table which describes
the prior over the arm mean and told the number of periods in the bandit.
She is then asked the minimum true mean of the known mean arm for which
she would choose the known mean arm in the first period. The mean of the
known mean arm is then announced, and the subject’s first period arm choice
is made for the subject based on her reported index: the known mean arm is
chosen for her if her reported index is lower than the known mean, and the
unknown mean arm is chosen otherwise. In subsequent periods, the subject
can choose either the known or unknown mean arm.

The minimum mean of a known mean arm for which she would choose
a known mean arm in the first period is elicited using a simple titration
mechanism where the subject can respond Yes or No to a question like,
“Would you choose the known mean arm this period if it paid X% of the
time?” This question was repeated, with successive values of X given by a
bisection algorithm, until the subject’s indifference point was narrowed to
the nearest percent. This value is the subject’s Gittins index.

That this mechanism is incentive compatible for eliciting a Gittins index
is proven in Anderson (2000a).

7.3 Willingness to Pay Treatment

In the willingness to pay treatment, the subject must choose between the un-
known mean arm and an arm which pays with probability one half. Before
the first period, each subject is given the opportunity to pay the experi-
menter to tell her the actual mean of the ambiguous arm. If she buys this
information, she knows the true means of both arms, and will choose the
one with the higher mean in each period. If she does not, she must choose
between a known and an unknown mean arm in each period.

The amount the subject is willing to pay is elicited using a simple titra-
tion mechanism like that used to elicit the Gittins index. The subject can
respond Yes or No to a question like, “Would you be willing to pay $X.XX to
learn the average of the unknown mean arm?” This question was repeated,
with successive values of $X.XX (between $0.00 and $1.00) given by a bi-
section algorithm, until the subject’s indifference point was narrowed to the
nearest penny. This value is the subject’s willingness to pay.

Once the subject’s willingness to pay is established, it is compared to
a randomly determined selling price. If the subject’s willingness to pay is
higher than the random price, then the subject is told the true mean of the
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unknown mean arm and the selling price is deducted from her total payoff;
if her willingness to pay is lower than the price, she is not charged, and is
not told the true mean of the unknown mean arm.

Subjects’ willingness to pay was assessed at the same six priors as Gittins
indexes are elicited. The value of learning 6, however, also depends on .
Theorem 6 indicates that for any fixed A < A(F, A), the ambiguity averse
agent will pay strictly more than an ambiguity neutral agent to learn the
value of 6; if A > A(F, A), then both agents would pay the same. This pre-
diction of ambiguity aversion can be tested by holding A fixed and changing
the prior from which the value of 8 is drawn. If ambiguity aversion con-
tributes to suboptimal experimentation, agents should pay much more than
optimal when high values of € are likely, but exactly optimal when low values
of @ are likely. By using A = 0.5, the different priors will progress through
the range where ambiguity averse agents will pay more for information into
that where they will pay just as much as ambiguity neutral agents.

7.4 Comments on Experimental Design

One challenge of this design is that risk aversion cannot be perfectly con-
trolled. In the experiments with normal payoff distributions, risk can easily
be controlled by having the variance of the payoff distribution be the same
for the known mean and unknown mean arms. With Bernoulli arms, how-
ever, the variance is a function of the probability of payoff. Therefore, it is
impossible to have both arms be equally risky.

Although perfect control is not possible, some measure of control is at-
tained by having the known arm be risky as well. As an uncertain payoff, it
deprives agents of a guaranteed reward, which may put them in a different
frame of mind than when they have access to a certain payoff.!

A slightly higher degree of control is possible in the willingness to pay
treatment, where the known mean arm pays with probability one half. This
maximizes the variance of the Bernoulli payoff distribution, thereby maxi-
mizing risk. Therefore, risk averse subjects will never prefer the ambiguous
arm to the unambiguous arm due to risk preference. Even if risk aversion
is a significant factor in behavior, it will draw agents toward the almost
surely less risky arm, the ambiguous arm. This should reduce the subject’s
willingness to pay for information about the true mean of the ambiguous

!There is some evidence that choice over events which occur with probability one is not
the limit of choice over risky lotteries. Therefore introducing a little uncertainty changes
the way subjects process the information and may attenuate the effects of risk aversion
relative to a choice where one alternative is certain.
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arm. Therefore, if subjects pay more than is optimal, it is attributable to
ambiguity aversion, and in spite of any possible risk aversion.

A second complication of this design is that it compares the value of in-
formation based on an elicited Gittins indexes with the value of information
based on a willingness-to-pay procedure. One might argue that any possible
difference observed is attributable to a framing effect due to the differing
procedures. There is no natural control for eliciting willingness-to-pay in
the Gittins context, or vice-versa, so these effects are difficult to control for.
It should be noted, however, that the phenomenon of underexperimentation
is robust to procedural variances, as it appears in both the direct choice
environment and the Gittins elicitation procedures. Therefore, we might
expect it to be invariant to a willingness-to-pay procedure as well.

7.5 Subjects

Subjects consisted of 33 Caltech undergraduates who did not necessarily
have any training in economics, though many had participated in unrelated
economics experiments. Experimental sessions lasted about an hour and a
half, and payments averaged $18, ranging from $3 to $24.

8 Results

Figure 1 is a box-and-whiskers plot of the data for each bandit. Gittins
indexes and willingness to pay are represented as differences from optimal,
with a positive difference corresponding to a higher than optimal Gittins
index or willingness to pay. Each bar indicates the distribution of the data.
The thin black horizontal line is at the median response, the grey box covers
the middle 50%, and the long vertical lines cover 90% of the data. Note
that this is the distribution of the data, and does not naturally correspond
to confidence intervals of the central tendency of the data.

Based on this graph, it appears the data are consistent with ambiguity
aversion. In every bandit, the median Gittins index is too low and the
median willingness to pay is too high. In five of the six bandits, about 90%
of the willingness to pay errors are higher than the median Gittins index
€error.

It is also noteworthy that the level of distribution of each error remains
fairly constant from one bandit to the next. There is no dramatic effect
of changes in prior standard deviation (ranging from 0.169 in (1.1,3.9) and
(3.9,1.1) to 0.289 in (1,1)), prior mean (ranging from (1.1,3.9) to (3.9,1.1))
or horizon length.
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Figure 1: Box-and-whiskers plot of the difference between subjects’ re-
sponses and the optimal Gittins index (on the left) and the optimal willing-
ness to pay (on the right)

The rest of this section develops formal statistical tests for the patterns
which appear in this graph.

Result 1 Most subjects had higher than optimal willingness to pay and
lower than optimal Gittins indezes.

Ambiguity aversion predicts that subjects will have WTPs which are too
high and Gittins indexes which are too low. The frequency with which each
subject made these errors is reported in Table 2. The columns represent
the number of the six bandits in which the subject reported a higher than
optimal willingness to pay, and the rows represent the number of the six
bandits in which the subject reported a lower than optimal Gittins index.
The number in each cell is the number of subjects who made that combina-
tion of errors. For instance, three subjects made had higher than optimal
willingness to pay and lower than optimal Gittins indexes in each of the six
bandits in which each measurement was elicited.

An overwhelming majority of subjects fall in the lower righthand corner
of this table, where they frequently have higher than optimal willingness
to pay and lower than optimal Gittins indexes. Of the 33 subjects, 25 of
them, have higher than optimal willingness to pay in at least five of the six
bandits; 17 of the 33 have lower than optimal Gittins indexes. This pattern
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# gi < | # wtp > optimal

optimal [0 1 2 3 4 5 6
0 1 2
1 1 1
2 3
3 3 2
4 3
5 1 1 4
6 2 2 4 3

Table 2: Number of subjects who reported a higher than optimal willingness
to pay in X bandits and lower than optimal Gittins indexes in Y bandits

Prior (1,1)
Willingness to Pay

N 33
Median overpay 0.05
# overpay 24.00
p-value 0.0045
Gittins Index

N 33
Median undervalue  0.10
# too low 27.00
p-value 0.0001

(2.5,2.5)

33
0.15
29.00
7E-06

33
0.04
19.00
0.192

(1.1,3.9)

33
0.29
30.00
1E-06

33
0.07
24.00
0.0045

(3.9,1.1)

32
0.19
29.00
2E-06

33
0.01
19.00
0.192

(23) (3.2
33 33
0.08 0.29
23.00 31.00
0.012 2E-07
33 33
0.03 0.04
20.00 22.00
0.112 0.0278

Table 3: One-tailed p-values that WTPs and Gittins indexes are optimal for
each arm and for the pooled data, based on the median response

of response is consistent with ambiguity aversion.

Result 2 The median willingness to pay is significantly higher than optimal
in each bandit, and the median Gittins index is significantly lower than op-
timal in three of the six bandits. In the pooled data, the median willingness
to pay is significantly higher than optimal and the median Gittins index is

significantly lower than optimal.

Table 3 presents the median overpayment and median undervaluation
for each arm, as well as for the pooled data. Because I am particularly
interested in overpayment and undervaluation, these errors will both be
defined as positive; a negative overpayment corresponds to underpayment,
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197
0.17
166.00

198
0.04
131.00
3E-06



and a negative undervaluation corresponds to a higher than optimal Gittins
index.

For every arm, the median overpayment is positive, meaning the me-
dian willingness to pay is higher than optimal. The third row indicates the
number of overpayments which are positive. This number can be used to
calculate a p-value for the hypothesis that the true median overpayment is
equal to zero using Mosteller and Rourke’s (1973) technique for calculating
a nonparametric confidence interval for the median. Mosteller and Rourke
establish a confidence interval by computing the probability that the true
median is between the i and (N —i + 1)*' largest observations by comput-
ing the chance that between i and (N — i+ 1) observations fall to the left of
the median.? This idea can be extended to this circumstance by using the
cumulative binomial to calculate the probability that, if the true median is
zero, only n < N observations are negative.

The last row presents this p-value, which is significant at all conventional
levels for each arm, and extremely significant for the pooled data. Therefore,
the median willingness to pay is significantly higher than optimal, consistent
with the prediction of ambiguity aversion.

The second section of the table presents the same information for un-
dervaluation. The median undervaluation is significantly positive at con-
ventional levels for three of the six bandits. However, the median of the
pooled data is highly significantly positive, consistent with the prediction of
ambiguity aversion.

8.1 Tests of Simple Effects

The data in Table 3 suggest that ambiguity aversion is a significant factor in
bandit problems, leading subjects to paradoxically undervalue information
by having lower than optimal Gittins indexes and overvalue information by
having higher than optimal willingness to pay. However, ambiguity aversion
also predicts that as ambiguity increases, the undervaluation and overpay-
ment should be more severe. However, a direct test of this prediction does
not support ambiguity aversion.

Result 3 When the mean and bandit horizon are constant, an increase in

2This probability is represented by the binomial distribution and is given by

2 (5)6)" &
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0.204 0.289
Prior Standard Deviation

Figure 2: Box-and-whiskers plot of the spread for two bandits which differed
only in prior variance

(1,1) (2.5,2.5) p-value
Spread 0.17 0.26 1.000
Overpayment 0.05 0.15 0.317
Undervaluation 0.10 0.04 0.140

Table 4: Median spread, overpayment and undervaluation for the (1,1) ban-
dit (with prior standard deviation 0.289) and the (2.5,2.5) bandit (with
prior standard deviation 0.204), and p-values for the hypothesis that the
two medians are the same.

variance does not result in a significant change in subjects’ Gittins indexes
or willingness to pay.

Whether variance affects the overpayment and undervaluation in the
way predicted by ambiguity aversion can be tested directly by comparing
the overpayment and undervaluation of the (1,1) and (2.5,2.5) bandits. Both
have four periods and a prior mean of 0.5, and therefore differ only in vari-
ance. The prior standard deviation of the (1,1) bandit is 0.289 and of the
(2.5,2.5) bandit is 0.204, so ambiguity aversion predicts the overpayments
and undervaluations to be larger for the (1,1) bandit.

This can be tested directly by looking at the spread, the sum of the
undervaluation and overpayment. Figure 2 is a box-and-whiskers plot of the
spread for the (1,1) and (2.5,2.5) bandits. The (1,1) bandit has a slightly
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<0.5 >0.5
Prior Mean

Figure 3: Box-and-whiskers plot of the spread for bandits which with Gittins
indexes above and below the known mean arm

smaller median spread than the (2.5,2.5) bandit, the opposite of what am-
biguity aversion would predict.

Table 4 shows the median spread for each bandit, and the p-value for
the test that the medians of the two samples are the same. The continuity-
corrected test statistic for the two-sample median test (Siegel and Castellan,
1988, Section 6.3) is exactly zero, leading to a p-value of one. Therefore,
although the median of the higher variance bandit is lower, the difference is
not significant.

The other two rows of the table, which show how overpayment and un-
dervaluation change with ambiguity, illustrates that, although undervalu-
ation increases with variance, overpayment seems to decrease (though not
significantly).

Result 4 When the variance and bandit horizon are constant, an increase
i mean results in no change in overpayment and a borderline significant
decrease in undervaluation.

Ambiguity aversion makes a subtle prediction about how the mean will
affect the spread. Although undervaluation should not be affected, the sub-
jects’ willingness to pay should be exactly the same as that of an ambiguity
neutral agents when the mean is below 0.5. The reason for this is that,
when the Gittins index is below 0.5, both the ambiguity averse and ambigu-
ity neutral subject expects to pick the 50/50 arm in the first period (and in
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Prior Mean < .5 Prior Mean > .5 p-value

Spread 0.20 0.26 0.336
Overpayment 0.18 0.26 0.336
Undervaluation 0.06 0.02 0.056

Table 5: Median spread, overpayment and underpayment for the bandits
with a prior mean below one half and those with a prior mean above one
half, and p-values for the hypothesis that the two medians are the same.

every period thereafter) if he does not learn the mean of the unknown arm.
Therefore, there is no ambiguity in the bandit, even when there is no infor-
mation. Since the two bandits with means less than 0.5 also have optimal
Gittins indexes below 0.5, the ambiguity averse agents must have subjective
Gittins indexes below 0.5. Therefore, when they are calculating their will-
ingness to pay, the ambiguity averse subjects consider the two-armed bandit
with the ambiguous arm to be an unambiguous problem, because they will
never encounter the ambiguity in optimal play.

This suggests that the level of overpayment should increase when the
mean increases from below 0.5 to above 0.5. Figure 3 is a box-and-whiskers
plot of the spread of bandits (1.1,3.9) and (2,3) on the left and (3,2) and
(3.9,1.1) on the right. There is a slight increase in the median, and in the
middle two quartiles, when the mean increases.

Table 5 presents the median spread, overpayment and undervaluation
for the bandits with a prior mean below one half and those with a prior
mean above one half. Although the median spread for the means above 0.5
is higher than that for the means below 0.5, the difference is not significant;
nor is the difference in median overpayment. Interestingly, undervaluation
is slightly lower than for priors with higher means, and this difference is
borderline significant.

It is possible that this lack of increase in the spread is attributable to am-
biguity aversion, if subjects’ Gittins indexes for the arms with means above
0.5 are, due to ambiguity aversion, also below 0.5. The reported Gittins in-
dexes, though not infrequently below the prior mean of the ambiguous arm,
are rarely that much lower. Therefore, the lack of difference is probably not
attributable to ambiguity aversion.

The key to the lack of increase may lie in the the fact that the premise
of the prediction does not hold: agents do not have optimal willingness to
pay in the arms with means below 0.5. Table 3 shows that bandits (1.1,3.9)
and (2,3) (and (1,1) and (2.5,2.5)) have significantly higher than optimal
willingness to pay. Considering why this is so may provide insight into why
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Horizon

Figure 4: Box-and-whiskers plot of the spread for bandits with different
horizons

5 Periods 8 Periods p-value

Spread 0.18 0.30 0.011
Overpayment 0.14 0.25 0.067
Undervaluation 0.02 0.07 0.056

Table 6: Median spread, overpayment and underpayment for the bandits
with a five period horizon and those with an eight period horizon, and p-
values for the hypothesis that the two medians are the same.

there is no mean effect.

Result 5 When the variance and mean are constant, an increase in horizon
results in an increase in both overpayment and undervaluation.

Ambiguity aversion does not hold any role for the horizon, so any change
in spread is not attributable to ambiguity aversion by may provide some
insight into subjects’ decision process.

Figure 4 is a box-and-whiskers plot of the spread of the (3.9,1.1) and
(2,3) bandits on the left and the (1.1,3.9) and (3,2) bandits on the right.
There is a slight increase in the median, and in the middle two quartiles,
with the longer horizon.

Table 6 presents the median spread, overpayment and undervaluation for
the bandits with a five period horizon and those with an eight period horizon.
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There is a statistically significant increase in spread from the five period to
the eight period horizon, generated by borderline significant increases in
both overpayment and undervaluation.

Both the optimal Gittins index and the optimal willingness to pay are
increasing in the horizon. These results suggest the subjects are too sensitive
to the increase in willingness to pay, but not sensitive enough to the increase
in the Gittins index.

This sort of relationship might arise from a simplification of Equation
61.2 In this experiment 7; is simply the number of periods in the bandit.
Subjects may try to approximate V() by some linear function of the number
of periods, rather than solve the dynamic programming problem. If this
approximation yielded an average per-period value which was lower than
the true per-period average value (which would be consistent with observing
lower than optimal Gittins indexes), subjects would have an average per-
period willingness to pay which was higher than optimal. Furthermore, their
simple model would be linearly increasing in the horizon, so the amount of
the overpayment would be increasing in the horizon.

8.2 Testing for Multiple Effects

The previous section used the design of the experiment to test simple hy-
potheses about the impact of changes in prior mean and variance and the
horizon. However, this approach throws out some of the data, as not all
six bandits are used in any of these tests. This section uses a simple linear
model to test for these effects in the whole sample.

Result 6 When tested on the entire sample, only the horizon effect is sig-
nificant.

The simple test for a change in the spread related to a change in the
variance only used one third of the sample, and only two variances. Figure
5 shows the distribution of the data in the bandits with every variance
used. As with the simple test, there is no dramatic trend toward larger
spreads with higher standard deviations. However, this larger sample does
not carefully control for mean and horizon effects.

The regressions in Table 7 use the whole sample and control for linear
mean and horizon effects, and come to the same conclusion: the spread does

3 After one session, a subject described to me exactly Equation 61 (these are Caltech
students) and then asked, “but how do you compute the value of not having the informa-
tion?”
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Constant Prior Mean Prior Std Log(Horizon)

Spread -0.03 0.12 -0.28 0.19
(-0.14) (0.75) (-0.54) (2.59)
Overpayment 0.07 0.07 -0.52 0.16
(0.31) (0.64) (-1.31) (2.08)
Undervaluation 0.12 0.09 0.28 0.03
(-0.85) (0.57) (0.84) (1.25)

Table 7: Results of regressions of spread, overpayment and undervaluation
on prior mean and variance and the log of horizon (t-statistics are in paren-
theses)

0.75¢

05}

(IF |

-0.25¢ —

Spread

-05¢

0.169 0.200 0.204 0.289
Prior Standard Deviation

Figure 5: Box-and-whiskers plot of the spread for all bandits ordered by
prior standard deviation
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not vary significantly with changes in the variance. This is an important
prediction of ambiguity aversion, and without support for it, it is difficult
to say conclusively that the data in Table 3 are actually attributable to it.
However, it may be that the small range of standard deviations used here is
not large enough to generate a detectable difference.

The mean effect is also still not significant, but the horizon effect remains
significant. Given that the horizon effect is consistent with a particular type
of systematic error in the computation of the value function and the Gittins
index, it seems possible that overpayment is attributable to the same cause
as undervaluation.

9 Discussion

This paper showed how a distaste for ambiguity, the variance of the prior dis-
tribution of the mean, might lead to the lower than optimal Gittins indexes
implied by results in search problems, as well as in Anderson’s experiments.
Ambiguity averse agents dislike receiving payoffs from ambiguous process,
and therefore are willing to accept less valuable unambiguous alternatives
than would be an ambiguity neutral agent. This means their Gittins indexes
are lower than optimal.

Lower than optimal Gittins indexes make it seem as though ambiguity
averse agents do not place enough value on the information they gain from
experimentation. It is paradoxical, then, that if the problem is reframed
to explore how much they would be willing to pay for information about
an ambiguous alternative, they are willing to pay more than an ambiguity
neutral agent, appearing to overvalue information.

This surprising prediction of ambiguity aversion is unique among the-
ories which assume that agents correctly formulate and solve the dynamic
programming problem. Other theories of systematic deviations, such as hy-
perbolic discounting and risk aversion, affect the calculation of the value
function in both the ambiguous and unambiguous cases, so the difference in
willingness to pay will not be generated. Of course, if agents do not correctly
formulate and solve dynamic programming problems, almost any effect can
be predicted.

The experiment presented here tested this surprising prediction, using
one treatment which elicited subjects’ Gittins index on six bandits, and an-
other treatment which elicited subjects’ willingness to pay on the same six
bandits. The basic results are exactly as ambiguity aversion predicts: sub-
jects have significantly lower than optimal Gittins indexes, and are willing to
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pay significantly more than optimal to learn the true mean of the ambiguous
arm.

However, ambiguity aversion also predicts that undervaluation and over-
payment should increase with the ambiguity of the alternative. Similarly,
there should be an increase in overpayment as the Gittins index moves from
below 0.5 to above 0.5. However, neither of these predicted effects is signif-
icant. Instead, the only significant change in overpayment and undervalua-
tion arises from increases in the number of periods in the bandit.

The increase in the spread as the horizon increases is mostly attributable
to an increase in overpayment. Why would agents be willing to pay more
to remove ambiguity from a longer bandit? They may be willing to pay
more to avoid having to solve the longer problem explicitly, giving up some
money to save mental computation cost. However, this does not explain
why Gittins indexes are lower than optimal.

Rather, because willingness to pay is higher than optimal when means
are below 0.5, it appears likely that at least some of the suboptimality ob-
served is attributable to a difficulty in solving the dynamic programming
problem. If this difficulty results from a simplification of Equation 61, over-
payment could increase with the horizon, without there necessarily being
any corresponding impact on undervaluation.

That difficulty solving the dynamic programming problems is causing
undervaluation and overpayment can be tested in a couple ways. A simple
to solve bandit, such as one in which the unknown arm either always paid or
never paid (with known probabilities) could test subject’s intuitive dynamic
programming ability. In retrospect, it would have been nice to include such a
bandit among those used in this experiment. Alternately, subjects could be
brought in for a thorough training session on dynamic programming which
could elaborate on the direction and magnitude of the effects discussed in
the strategy section of the instructions.

Like risk aversion, ambiguity aversion is a characteristic of individual
agents. Therefore, rather than try to eliminate it, policies should focus on
reducing ambiguity or on insuring against it. Insuring against ambiguity
is more difficult than insuring against risk because it is difficult to insure
against bad second order probability outcomes. This is because the outcome
itself, the mean of the payoff distribution on the arm, is not observable. In
the job search context, ambiguity may be represented by the current state
of the job market or level of unemployment. Unlike the individual, however,
the government policymaker has access to aggregate job market data, and
may be able to use other people’s success rates to estimate the true mean of
the wage offer distribution. This information can be used to offer workers
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unemployment insurance against bad second order probability outcomes,
and to encourage ambiguity averse agents to search more.

In other applications, public policy is unnecessary because other agents
in the economy may have an interest in helping agents overcome their ten-
dency to underexperiment. For instance, companies introducing new brands
and stores with low prices would both like consumers to experiment with
them. If these agents know consumers do not experiment enough, they can
take steps to encourage experimentation. A company with a new brand
might offer free samples at the supermarket or through the mail, or gen-
erous coupons. Stores with low prices may aggressively advertise, or even,
as some new dot-coms are doing, offer first purchases for free. These mea-
sures all provide information which reduce ambiguity, and will benefit the
consumer in the long run.

Finally, this paper accomplished a broader goal of demonstrating how
simple behavioral models can be integrated into larger bodies of theory to
produce testable predictions based on sound psychology. Although there
are a number of different models of ambiguity aversion, the Kahn and Sarin
model leverages the second order probability available to bandit agents.
With some interpretation, the behavioral model was integrated into the
sophisticated mathematics of bandits to derive the surprising and testable
prediction that agents will have lower than optimal Gittins indexes, but
be willing to pay more than optimal to eliminate ambiguity. Hopefully the
exercise of developing the theory and testing it will inspire others to integrate
formal behavioral models into their theories.
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A Instructions

A.1 Gittins Index Treatment

You are about to participate in an experiment designed to provide insight
into decision processes. The amount of money you make will depend partly
on decisions you make and partly on chance. If you follow the instructions
carefully and make good decisions, you might earn a considerable amount
of money.

A.1.1 How You Make Money

You will earn one dollar each time a red ball is drawn from an urn you
choose. In each period, you may choose one of two urns: one with 100 balls
in some known mixture of red and white, and one with 100 balls in some
unknown mixture of red and white. When you choose an urn, one ball will
be randomly drawn from that urn and it determines your payoff: one dollar
if it is red, nothing if it is white.

You will be paid in cash for all of your earnings in excess of $28.

A.1.2 Order of the Experiment

This experiment will proceed as a number of rounds. Each round will have
several periods. The number of periods in each round will be announced at
the beginning of that round.

At the beginning of each round, the computer will randomly determine
the number of red balls in the known mixture urn and in the unknown
mixture urn. Before you learn the number of red balls in the known mixture
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urn, you will be asked the smallest number of red balls which would lead
you to choose the known mixture urn in the first period. Your first period
choice will be made for you by the computer based on your response. The
computer will choose the known mixture urn for you if it contains more red
balls than your smallest number, and the unknown mixture urn for you if
the known mixture urn contains fewer red balls than your smallest number.

After the first period, you may select either urn. In each period, you will
have to trade off selecting the known mixture urn with learning more about
the number of red balls in the unknown mixture urn.

A.1.3 Urns

At the beginning of each round, you will be told the number of red balls in
the known mixture urn. It may contain any number between zero and 100
red balls.

You will not know the mixture of red and white balls in the unknown
urn. It may contain any number between zero and 100 red balls. However,
not all mixtures are equally likely. The likelihood of different proportions of
red balls is represented on the urn tables.

The number of red balls in both urns will remain constant from one
period to the next, but will change at the beginning of each round.

A.1.4 Urn Tables

The chance that the unknown mixture urn contains a given number of red
balls is represented in tables like the Practice Urn Table you have been given.
A new table will be distributed at the beginning of each round.

The first column of the table shows a possible number of red balls. The
second column indicates the chance that there are exactly X number of red
balls in the unknown mixture urn. This is also illustrated in the graph below
the table with a solid black line (read on the left axis). For instance, there
is a 1% chance there are exactly 25 red balls (and 75 white balls) in the
unknown mixture urn.

The third column of the table shows the chance that there are at least X
red balls in the unknown mixture urn. This is illustrated in the graph below
the table with a dashed lack line (read on the right axis). For instance, there
is a 49.08% chance that there are fewer than 50 red balls in the unknown
mixture urn.
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A.1.5 Known Mixture Urn Cutoff

In the first period, the computer will ask you ”Would you choose the known
mixture urn in this period if it contained [Number| red balls?” If you would,
click the ”"Yes” button, if not, click the "No” button. You will be asked
a series of these questions, with a different [Number| each time, until the
cutoff point at which you would just prefer the known mixture urn has been
narrowed down to the nearest ball.

You should answer these questions carefully because your first period urn
choice will be made for you based on your answers. The computer assumes
you will choose the known mixture urn for all numbers of red balls larger
than the cutoff, and the unknown mixture urn otherwise. Therefore, it will
automatically choose the known mixture urn if it has more red balls than
your cutoff, and the unknown mixture urn if the known mixture urn has
fewer red balls than your cutoff.

A.1.6 Using the Computer

There are four panels on the computer screen. You may click in these panels
with your mouse, but please do not attempt to use any other applications,
look at the source code for this experiment or visit any other web sites during
the experiment.

The History Panel
The long vertical panel on the left will contain your playing history. Please
look at that panel now. For each period, it will show your choice of urn,
your payoff and the minimum value for which you would choose the known
mixture urn; recent periods will be added to the top of the list, though
earlier periods will still be accessible by scrolling down.

The Information Panel
The top of the three panels on the right side provides you with information
on the current period, the total number of periods and your total payoff.
It also provides a ”Best Guess” at the number of red balls in the unknown
mixture urn. In the first period, it shows the average number of red balls
that would be an urn based on the urn table. Once the unknown mixture
urn is chosen, the "Best Guess” uses a law of probability called Bayes’ rule.
Bayes’ rule uses the chance the observed combination of red and white balls
arose from each possible mixture, and the chance of each mixture from the
urn table, to determine the most likely average number of red balls in the
unknown mixture urn, given the available information.

The Urn Choice Panel
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Please look at the middle of the three righthand panels (which now has a
”Begin” button). This is where you indicate your choice of urn each period.
To indicate your choice of an urn, click once with the mouse in the circle
in front of the name of the urn you wish to choose; a black dot will appear
within the white circle. Then click the Submit button at the bottom of
the panel one time with the mouse. Clicking the Submit button causes the
computer to select a ball and calculate your payoff for the period.
The Instructions Panel

The bottom of the three right panels will contain these instructions. You
may scroll through them and examine them at any point during the exper-
iment.

A.1.7 Summary

1. At the beginning of the round, the Experimenter will distribute an urn
table and announce the number of periods in the round.

2. The computer will randomly select the number of red balls in the
known mixture urn, and in the unknown mixture urn.

3. You will be asked a series of questions to determine your known mix-
ture urn cutoff, the minimum number of red balls in the known mixture
urn for which you would choose it that period.

4. The computer will automatically choose the known mixture urn for
you if its actual number of red balls is higher than your cutoff, and
the unknown mixture urn otherwise.

5. The computer will randomly draw a ball from your chosen urn and
announce your payoff: one dollar if the ball is red and nothing if it is
white.

6. Fill in the record section of the urn table.

7. Wait for the experimenter to announce the beginning of the next pe-
riod.

8. Choose between the known and unknown mixture urns, and return to
Step 5.
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A.1.8 Strategy

You have a chance to receive a payoff when you select either urn, but when
you select the unknown mixture urn, you also gain some information about
the number of red balls it contains, which may help you in future periods. At
any point, your best guess may be higher or lower than the actual number of
red balls in the urn. By trying the unknown mixture urn, you may learn it
has more red balls than the known mixture urn, information you can use to
improve your chance of getting a red ball in future periods; if the unknown
mixture urn does not have more red balls, you can choose the known mixture
urn in future periods.

This possibility of learning the unknown mixture urn is better than your
initial best guess means it is sometimes advantageous to select the unknown
mixture urn even when the known mixture urn contains more red balls
than your best guess at the number in the unknown mixture urn. Whether
it is worth experimenting with the unknown mixture urn depends on the
difference between your best guess and the number of red balls in the known
mixture urn, the number and color of the balls you have observed from the
unknown mixture urn, the chance that the actual number of red balls in the
unknown mixture urn is each value higher than your best guess (based on
the urn table) and number of periods you have left to benefit from learning
the unknown mixture urn has more red balls than your initial best guess.

A.2 Willingness to Pay Treatment

You are about to participate in an experiment designed to provide insight
into certain features of decision processes. The amount of money you make
will depend partly on decisions you make and partly on chance. If you
follow the instructions carefully and make good decisions, you might earn a
considerable amount of money.

A.2.1 How You Make Money

You will earn one dollar each time a red ball is drawn from an urn you
choose. In each period, you may choose one of two urns: one with 50 red
balls and 50 white balls, and one with 100 balls in some unknown mixture
of red and white. When you choose an urn, one ball will be randomly drawn
from that urn and it determines your payoff: one dollar if it is red, nothing
if it is white.

You will be paid in cash for all of your earnings in excess of $28.
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A.2.2 Order of the Experiment

This experiment will proceed as a number of rounds. Each round will have
several periods. The number of periods in each round will be announced at
the beginning of that round.

At the beginning of each round, the computer will randomly determine
the number of red balls in the unknown mixture urn. You will then be asked
how much you would be willing to pay to learn the number of red balls in the
unknown mixture urn. If you are willing to pay more than the computer’s
randomly determined selling price, the computer will tell you then number
of red balls in the unknown mixture urn and deduct the selling price from
your total payoff.

If you are not willing to pay more than the computer’s randomly de-
termined selling price, you will not be charged, but you will only be able
to learn about the the number of red balls in the unknown mixture urn by
choosing it. In each period, you will have to trade off choosing the 50-50 urn
with learning more about the number of red balls in the unknown mixture
urn.

A.2.3 Urns

In each period you will be choosing between two urns. One urn will always
be a 50-50 urn, containing 50 red balls and 50 white balls. On average, this
urn will pay one dollar half the time.

You will not know the mixture of red and white balls in the unknown
urn. It may contain any number between zero and 100 red balls. However,
not all mixtures are equally likely. The likelihood of different proportions of
red balls is represented on the urn tables.

The number of red balls in the unknown mixture urn will remain constant
from one period to the next, but will change at the beginning of each round.

A.2.4 Urn Tables

The chance that the unknown mixture urn contains a given number of red
balls is represented in tables like the Practice Urn Table you have been given.
A new table will be distributed at the beginning of each round.

The first column of the table shows a possible number of red balls. The
second column indicates the chance that there are exactly X number of red
balls in the unknown mixture urn. This is also illustrated in the graph below
the table with a solid black line (read on the left axis). For instance, there
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is a 1% chance there are exactly 25 red balls (and 75 white balls) in the
unknown mixture urn.

The third column of the table shows the chance that there are at least X
red balls in the unknown mixture urn. This is illustrated in the graph below
the table with a dashed lack line (read on the right axis). For instance, there
is a 49.08% chance that there are fewer than 50 red balls in the unknown
mixture urn.

A.2.5 Willingness to Pay (WTP) for Information

At the beginning of each round, you will have the opportunity to buy from
the experimenter the number of red balls in the unknown mixture urn. You
may want to pay for this information because it tells you which urn has
more red balls, and therefore is more likely to pay one dollar. If you do not
have this information, you can learn whether there are many red balls in the
unknown mixture urn only by choosing it and observing your payoffs. On
the other hand, you do not want to pay more for this information than you
can gain by having it.

A.2.6 Using the Computer to Purchase Information

After you have been shown the urn table and learned the number of periods
in the round, you will be asked ”Would you be willing to pay $X.XX to
learn the number of red balls in the unknown mixture urn?” If you would be
willing to pay that amount, click ”Yes,” if not, click ?No.” The computer will
ask a series of these questions, with different values, until it has narrowed
the amount you are willing to pay to the nearest cent.

Once it has determined how much you are willing to pay, the computer
will compare your value to the randomly determined price at which it will
sell the information. If your WTP is higher than the computer’s price, the
computer will tell you the number of red balls in the unknown mixture urn
and deduct its price (not your WTP) from your total payoff. If your WTP
is lower than the computer’s price, you will not be charged, but you will not
be told the number of red balls in the unknown mixture urn.

Be careful in selecting your WTP. If you enter a value which is higher
than you are really willing to pay, you may have to pay more for the in-
formation than you want; if you enter a value which is lower than you are
really willing to pay, you may not receive the information when the computer
would be willing to tell you for a price you would be willing to pay.
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A.2.7 Using the Computer to Choose an Urn

There are four panels on the computer screen. You may click in these panels
with your mouse, but please do not attempt to use any other applications,
look at the source code for this experiment or visit any other web sites during
the experiment.

The History Panel
The long vertical panel on the left will contain your playing history. For
each period, it will show your choice and the payoff you received; recent
periods will be added to the top of the list, though later periods will still be
accessible by scrolling down.

The Information Panel
The top of the three panels on the right side provides you with information
on the current period, the total number of periods and your total payoff.
It also provides a ”Best Guess” at the number of red balls in the unknown
mixture urn. In the first period, it shows the average number of red balls
that would be in an urn based on the urn table. Once the unknown mixture
urn is chosen, the "Best Guess” uses a law of probability called Bayes’ rule.
Bayes’ rule uses the chance the observed combination of red and white balls
arose from each possible mixture, and the chance of each mixture from the
urn table, to determine the most likely average number of red balls in the
unknown mixture urn, given the available information.

The Urn Choice Panel
The middle of the the three righthand panels is where you indicate your
choice of urn in each period. To indicate your choice of an urn, click once
with the mouse in the circle in front of the name of the urn you wish to
choose; a black dot will appear within the white circle. Then click the
Submit button at the bottom of the panel one time with the mouse. Clicking
the Submit button causes the computer to generate a Random Value and
calculate your payoff for the period.

The Instructions Panel
The bottom of the three right panels will contain these instructions. You
may scroll through them and examine them at any point during the exper-
iment.

A.2.8 Summary

1. At the beginning of the round, the Experimenter will distribute an urn
table and announce the number of periods in the round.

2. The computer will randomly select the number of red balls in the
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unknown mixture urn using the urn table.

3. The computer will ask you a series of questions to determine the max-
imum price you are willing to pay to learn the number of red balls in
the unknown mixture urn.

4. The computer will compare your WTP to a random selling price.

(a) If your WTP is higher than the selling price, the computer will
tell you the number of red balls in the unknown mixture urn and
deduct the selling price (not your WTP) from your total payoff.

(b) If your WTP is lower than the selling price, the computer will
not tell you the number of red balls in the unknown mixture urn.

5. The experimenter will instruct you to choose an urn.

6. The computer will randomly draw a ball from your chosen urn and
announce your payoff: one dollar if the ball is red and nothing if it is
white.

7. Fill in the record section of the urn table.

8. Wait for the experimenter to announce the beginning of the next pe-
riod.

9. Choose between the known and unknown mixture urns, and return to
Step 6.

A.2.9 Strategy

You have a chance to receive a payoff when you select either urn, but when
you select the unknown mixture urn, you also gain some information about
the number of red balls it contains, which may help you in future periods. At
any point, your best guess may be higher or lower than the actual number of
red balls in the urn. By trying the unknown mixture urn, you may learn it
has more than 50 red balls, information you can use to improve your chance
of getting a red ball in future periods; if the unknown mixture urn has fewer
than 50 red balls, you can choose the 50-50 urn in future periods.

This possibility of learning the unknown mixture urn is better than your
initial best guess means it is sometimes advantageous to select the unknown
mixture urn even when your best guess at the number in the unknown
mixture urn is less than 50. Whether it is worth experimenting with the
unknown mixture urn depends on the difference between your best guess and
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50, the number and color of the balls you have observed from the unknown
mixture urn, the chance that the actual number of red balls in the unknown
mixture urn is each value higher than your best guess (based on the urn
table) and number of periods you have left to benefit from learning the
unknown mixture urn has more red balls than your initial best guess.

Feel free to earn as much money as you can. Are there any questions?
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