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Abstract

This paper uses a two-armed bandit to extend the result that people
are present biased in search problems to the more general case of bandit
problems. Bandit problems are economically significant, encompassing
such phenomena as brand choice and natural resource exploration, and
can help distinguish two models of present bias which are confounded in
the search environment. Hyperbolic discounting attributes present bias
to the discount sequence, and horizon truncation attributes present bias
to a cognitive shortcut used to estimate the value of information gained
through experimentation. Optimal behavior corresponds to placing a high
initial value on experimentation, then decreasing it exponentially as in-
formation is gained in later periods. First period results from this study
are consistent with present bias, suggesting that people do not experiment
enough. Later period results suggest overexperimentation, a phenomenon
which can be explained by horizon truncation, but is inconsistent with
hyperbolic discounting. Together, these results suggest subjects place a
moderate initial value on experimentation, then decrease it linearly. Im-
plications for public policy and corporate strategy are considered.

1 Introduction

In many economically significant environments, agents must repeatedly choose
among uncertain alternatives about which they can learn only through exper-
imentation. Examples include the situations of a shopper deciding whether to

*This draft is preliminary. Comments welcome at cmaQuri.edu. I am grateful for in-
sightful discussions with and encouragement from Jeff Banks and Colin Camerer, and to
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ments from an audience at the 1999 Meetings of the Southern Economic Association in New
Orleans, and audiences at Caltech, Florida State University, Miami University and the Uni-
versity of Rhode Island. The instrument for the experiment presented here is available at
http://eeps6.caltech.edu/ “cma/mab/UrnsMain.html.



purchase his favorite brand of orange juice or experiment with a new one he has
never tried and an oil company deciding whether to continue testing a tract of
land or to move its equipment to another tract. If these agents do not experi-
ment enough, they can lose considerable welfare: the shopper could miss out on
a delicious new brand of juice he would purchase and enjoy in the future, and
the oil company may engage in an expensive recovery operation based on too
few good test results. On the other hand, if these agents experiment too much,
they may lose welfare as they pursue inferior choices.

Despite the economic importance of this sort of experimentation, little is
known about how agents approach such problems. The existing knowledge is
based on studies of search problems, which are a special case of experimenta-
tion problems. Agents in search problems do not search enough, suggesting
that they are present biased—tempted to maximize their current payoff at the
expense of future payoffs. However, the extant research leaves us without an
understanding of how or whether present bias operates in the much broader
domain of experimentation problems. This paper presents a laboratory exper-
iment to determine if the present bias in search problems generalizes to the
more sophisticated environment. If so, the experimental data can be used to
test the predictions of two putative explanations of present bias, horizon trun-
cation and hyperbolic discounting. Horizon truncation holds that agents think
only a few periods ahead when making decisions, so present bias appears be-
cause the full future is not considered when calculating the future benefit of
present experimentation. Hyperbolic discounting attributes present bias to a
discount sequence which puts more weight on the current period than on future
periods. Which of these models explains present bias has important practical
implications for corporate strategy (e.g., natural resource exploration and new
product marketing) and government policy (e.g., unemployment insurance and
incentives).

1.1 Applications of the Experimentation Environment

Conceptually, experimentation problems focus on the value the agent assigns to
the information obtained from experimentation. This information value arises
from the expected increase in future payoffs based on the information. A sur-
prising array of practical and economically significant decisions can be explained
in terms of experimentation and information value:

Brand Choice: As mentioned above, a consumer shopping for a product he
frequently buys, like orange juice or window cleaner, faces an experimentation
problem: he must decide whether to purchase the best brand he’s tried so far,
or to experiment with new brands. He knows how good his favorite brand is
on average, and how much it varies in quality, but he can learn about the new
brand only by trying it. Therefore, he must consider whether the value of the
information obtained about the quality of the new brand is worth foregoing his
favorite brand. If he learns the new brand is better, he can use this information
to improve his future utility by buying the new brand again. On the other hand,
if it is worse, he has missed out on his favorite brand once, but he can return to



it on the next purchase. If he underestimates the impact better orange juice will
have on his future utility, he may never try the new brand and deprive himself
of a possible gain.

Exploration: The oil company also faces an experimentation problem. Any
agent exploring for natural resources tests land parcels to decide whether to mine
or drill them. In this case, both additional testing and moving to a new tract
are experimentation. The company can improve its estimate of how much oil
is in the current tract with additional testing, or it can conclude that addi-
tional testing is so unlikely to influence its recovery decision that its equipment
would be better used exploring another tract. If the company undervalues the
information it would gain from additional testing on the current tract, it might
decide to drill based on too few good test results, embarking on an expensive
recovery operation in an area with few resources, or it might decide to abandon
the parcel based on too few bad test results, leaving valuable resources in the
ground.

Research and Development: Researchers want to allocate their time
among a number of projects in a way that will maximize their chance of making
an important discovery. For instance, a pharmaceutical company might exper-
iment with several different approaches to treating a disease. The information
acquired from experimentation can be used to focus subsequent research on the
most promising alternatives, reducing the costs that they would incur by pur-
suing unpromising ones. However, if the company undervalues the information
additional research on a specific treatment would provide, they may abandon an
effective and profitable treatment whose promise was not immediately apparent.

Job and Price Search: Search problems are a special case of experi-
mentation problems. Searcher’s choices are somewhat different than those just
described. Rather than repeatedly choosing from among multiple alternatives,
at least one of which gives an uncertain payoff, searchers must decide whether
to exit the problem with a known payoff stream (i.e., accept an offer) or to
experiment by waiting for another offer. The information value here represents
not the value of information per se, but rather the expected increase in future
payoffs arising from the chance that future offers will be better.

For example, a worker looking for a job must decide to accept a wage offer,
and receive that wage forever, or to experiment by continuing to look for a better
offer. For low offers, she can expect to receive a better offer in the future, and
this possibility constitutes the information value. If she does not experiment
with enough different prospective employers, she could end up underemployed.

Similarly, a consumer looking for the best price on a product must decide
whether to buy from the closest store at that store’s price, or to experiment
by searching other stores for a better price. The information value in this
problem arises from the possibility that other stores have lower prices, and so
the consumer may gain from searching. If the consumers do not experiment
with different stores, stores can charge high prices, knowing consumers will not
seek lower prices elsewhere.



1.2 Outline of this Paper

Determining if and understanding how present bias contributes to behavior in
these environments is critical to helping agents maximize their welfare. The
remainder of this paper is dedicated to establishing the role of present bias in
experimentation problems. The next section presents evidence on present bias
in search problems, and explains why those findings may generalize to exper-
imentation problems. Section 3 discusses the two models of present bias to
be considered here, hyperbolic discounting and horizon truncation. Section 4
formalizes the experimentation environment as a multi-armed bandit. Within
the bandit framework, it presents a new theoretical result that the discounted
present value of experimentation can be expressed as a number, the dynamic
allocation index, even for the hyperbolic discounter. Section 5 describes the
experiment, including the mechanism used to elicit dynamic allocation indexes
from subjects. Section 6 reports the results of the experiment, using subjects’
reported dynamic allocation indexes to draw conclusions about how present bias
influences experimentation decisions. Section 7 discusses how the experimen-
tal results inform our understanding of economic experimentation and suggests
directions for future work.

2 Evidence for Present Bias in Experimentation
Problems

The possibility that present bias is a significant factor in experimentation prob-
lems should be of concern to economists because it implies considerable welfare
is being lost because agents do not optimize. Suboptimal experimentation has
already been observed in search problems. Cox and Oaxaca (1996, 1992, 1990,
1989) were concerned that job seekers may not engage in enough search and
therefore end up underemployed. They asked experimental subjects to either
accept a “wage offer” drawn from a known probability distribution, and receive
that value in each remaining period, or take a fixed payment in the current
period and receive another wage offer in the next period. They found that
subjects’ reservation wages were consistently lower than optimal, leading them
to accept lower wages than optimal searchers would have taken. In this envi-
ronment, the search cost is negligible, so Cox and Oaxaca attributed this early
stopping to risk aversion.

This result replicated earlier studies by Schotter and Braunstein (1981) and
Braunstein and Schotter (1982) which found that experimental subjects did not
search enough. Schotter and Braunstein asked subjects to name a (nonbinding)
reservation wage, and although their reservations wages were close to optimal,
they spent significantly fewer than the optimal number of periods searching.

Although risk aversion could contribute to undersearch, there is evidence
against its being the only explanation. First, Schotter and Braunstein induced
a high level of risk aversion and still observed too little search. Second, in a
less risky treatment where searchers were permitted to recall past offers, Cox



and Oaxaca observed even less search, suggesting increased risk aversion. This
replicated Hey’s (1987) finding that reservation prices in an experimental price
search were actually lower than without recall. This feature of the data is
inconsistent with risk aversion since it implies the level of risk aversion varies
within subjects across treatments. This, in turn, suggests some form of present
bias may be contributing to reservation wage and price formulation in laboratory
studies.

There is also some support for present bias in field studies of search. Al-
though he did not consider a search-based model, the very high discount rates
in appliance purchases observed by Hausman (1981) are consistent with under-
search for quality. Similarly, Pratt, Wise and Zeckhauser (1979) observed that if
consumers do not engage in enough price search, prices could vary widely from
one retailer to the next. They measured the price variance of 39 goods selected
at random from the Boston yellow pages by calling merchants selling each good.
They found that price variance for moderate and high priced goods was in fact
higher than could be sustained by optimal search, meaning people were paying
supracompetitive prices for many goods. They attribute this suboptimality to
an unobserved search cost. Present bias would make even a small search cost
more salient, further reducing the amount of search.

However, Pratt, Wise and Zeckhauser’s data also provide an indication that
present bias may the result of some search and experimentation heuristic which
does not perform well in the particular problems studied. They found people
searched nearly as much for inexpensive goods like dry cleaning as for expensive
goods such as boats, appearing to be more sensitive to the percentage that
could be saved with search, rather than the monetary value of the savings. This
suggests that the apparent present bias is not present bias per se, but rather
an unintended consequence of a simple choice rule which is poorly calibrated to
these problems.

Each of these results indicates that agents do not search enough, and that
their search pattern is consistent with present bias. Because they dispropor-
tionately value the current period, present biased agents are more likely to stop
searching and consume sooner, at the expense of future payoffs. Unfortunately,
these results leave us with little information about whether present bias might
operate in the broader domain of experimentation problems, including those in
which there is more than one uncertain alternative.

Banks, Olson and Porter (1997) recognized the economic significance of ex-
perimentation problems and formulated a laboratory study to determine whether
or not people behave optimally. They ran two treatments, one where myopic
behavior, selecting the alternative with the highest expected value, was always
optimal and another where it was sometimes optimal to choose the alternative
with lower expected payoff. They observed a higher level of myopic behavior
in the treatment where myopic behavior was optimal, suggesting a tendency
toward optimality. However, they did not test for present bias explicitly, and a
simulation study I have run suggests that their design is not powerful enough



to distinguish optimal behavior from even very high levels of present bias.!

The search results can be easily extended to the more general experimenta-
tion framework. An experimenting agent must choose among several alterna-
tives, at least one of which has uncertain outcomes. A searching agent must
decide between accepting a fixed stream of payments (e.g., a price or wage offer)
and experimenting with the distribution of offers. An agent tempted to maxi-
mize her current payoff is not induced to continue searching by the possibility of
better offers. Similarly, the possibility that uncertain alternatives may pay bet-
ter in the future is not enough to induce her to experiment with them; instead,
she will opt for the alternative with the current highest expected payoff. In
the earlier examples, this means the shopper will not try new brands of orange
juice, the oil company will drill based on only a few good test results, and the
pharmaceutical company will pursue only treatments which demonstrate early
promise. In each case, these agents fail to maximize their future payoffs because
they may miss delicious new brands of orange juice, signs that a tract will not
be profitable or the true promise of a new treatment. One aim of this study is
to test this intuition that present bias extends beyond search and causes welfare
loss in experimentation problems.

3 Models of Present Bias

A second aim of this study is to identify a model which explains any present
bias observed. I consider two models which are useful in different domains, hy-
perbolic discounting and horizon truncation. In hyperbolic discounting, present
bias arises from a discount sequence which places relatively more weight on the
present period than in standard exponential discounting. In horizon truncation,
on the other hand, present bias arises from a cognitive shortcut in setting up
and solving the dynamic programming problem whose solution yields the opti-
mal strategy. It has been used to explain behavior in bargaining and dominance
solvable games.

IThe simulation study used a logit choice model to try to ascertain whether choice data
could be used to draw conclusions about the 8 parameter in Equation 2. Then
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where \? — E[X|F;] is the optimal exponential information value for arm i. Using a variety
of priors and payoff probabilities with Bernoulli arms, it was not possible to reject that v =0
and not reject that y = 1 (the true model) in more than about 15% of the simulated datasets
of 6000 choices; using a variety of priors and payoff distributions in normal arms, it was not
possible to reject that v = 0 and not reject that v = 1 in more than about 40% of simulated
datasets of 6000 choices.

The reason for this lack of power seems to be that, in practice, the difference between
E[X|F;] and E[X|F_;] usually swamps the information value term, A} — E[X|F;]. Very few
choices between randomly valued arms are within the range of the information value to enable
identification of the «y. From this, I conclude that choice data alone is not sufficient to draw
conclusions about J; this is what motivates the somewhat complex design of the experiment
presented in this paper.



3.1 Hyperbolic Discounting

Hyperbolic discounting attributes present bias to the discount function. Rather
than behaving as exponential discounters, hyperbolic discounters have the time-
separable utility function

T
U(zyy ... ) =20 + B Z Sty Vit (2)

T=t+1

A discount sequence of this form is also known as 8 — & preferences.? Note that
this discount sequence applies at every t, meaning there is an inconsistency be-
tween how the agent believes he will act in the future and how he actually does.
Hyperbolic discounters believe they will be exponential beginning next period,
but if 8 < 1, they place less weight on the value of future payoffs than would an
exponential discounter. Given this discount sequence, it is assumed that they
correctly set up and solve dynamic programming problems. This means that
hyperbolic discounters will underestimate the value of experimentation because
they heavily discount the future payoffs which benefit from present experimen-
tation.

Hyperbolic discounting has been shown to explain a number of anomalous
economic phenomena. Laibson (1997) shows that consumption and income fluc-
tuate together because of hyperbolic discounting: people do not save enough to
smooth their income because they are biased toward current consumption. He
also shows that easier access to credit, and the concomitant possibility of in-
creasing current consumption, led to declining savings rates during the 1980s.
Additionally, O’Donoghue and Rabin (1999) show that Christmas clubs serve
as “commitment devices” which help people resist the bias toward current con-
sumption caused by the hyperbolic discount function; an exponential discounter,
of course, would have no reason to pay a bank to prevent him from accessing
his money until December.

Della Vigna and Paserman (1999) have taken a step toward extending these
results to search and bandit problems. They used hyperbolic discounting to
explain some aspects of field data on job search. They find that hyperbolic
discounters do not want to incur a search cost, and so procrastinate their search
efforts. Also, they reinforce the idea that Cox and Oaxaca’s results could be
due to hyperbolic discounting because once people do begin their search, hyper-
bolic discounters tend to take lower wage offers; they are more likely to end up
underemployed because they stop their job search process too soon.

In each of these applications, there is a significant element of temptation:
people are tempted to spend money they are holding rather than save it, and
to take a job which begins paying now rather than continue searching. This
temptation is often a significant factor motivating the application of the hy-
perbolic discounting model. In experimentation environments, there is no such

2This “quasi-hyperbolic” simplification of the hyperbolic discount sequence was introduced
by Phelps and Pollak (1968). Lowenstein and Prelec (1993) discuss a more general hyperbolic
discount function. See O’Donoghue and Rabin for a discussion of the differences between
hyperbolic and quasi-hyperbolic preferences.



salient temptation. Therefore, discovering that hyperbolic discounting extends
to experimentation problems would extend its domain considerably, and pro-
vide some evidence against the argument that such behavioral models are too
problem specific.

A significant issue in hyperbolic discounting is how to handle the incon-
sistency between how an agent believes he will behave and how he actually
does. For purposes of this study, I focus on the hyperbolic discounters whom
O’Donoghue and Rabin call naifs. Naifs are “naive” about their own hyperbolic
discounting tendencies and honestly believe that they will become exponential
in the next period, although they do not; they are hyperbolic again.® Many
argue that naifs should not remain naifs, that they should learn that they will
be hyperbolic in the future. This objection has less bite in experimentation
problems, where the cost of present bias may never be realized, especially if the
agent never articulates to himself a commitment to be exponential in the future.
For example, the hyperbolic shopper who bypasses the truly best orange juice
every week in favor of the best brand he’s had so far might never learn there is
a better brand, and thus he would never regret his past purchases. Further, if
he never promises himself he will try the new brand “next time,” he may not
realize that his eventual actions conflict with those he implicitly plans in com-
puting an optimal strategy. Thus, experimentation problems are an important
test for hyperbolic discounting because, unlike in the consumption and savings
environment, even a potentially sophisticated hyperbolic discounter may never
learn about his present bias.

3.2 Horizon Truncation

While hyperbolic discounting posits that present bias arises from the discount
sequence, horizon truncation holds that present bias is a possibly unintentional
side effect of a cognitive shortcut used to solve the dynamic programming prob-
lem. It says that, due to limited computational ability, laziness, or even a so-
phisticated cost-benefit analysis, agents do not consider the entire future when
doing backward induction; rather, they perform a backward induction based on
a short horizon, then add an adjustment factor to represent the value of omit-
ted periods. If the adjustment factor is too small, horizon truncation leads to
present-biased behavior because the agent considers only the value of experi-
mentation represented in the abbreviated problem.

Horizon truncation appears in a number of domains. It is often employed
deliberately in computer science to arrive at solutions to infinite horizon prob-
lems; if the future is discounted, computing several hundred periods into the
future captures most of the value of a truly infinite horizon. In economic de-
cision making, it has appeared in Rubinstein bargaining problems. Camerer et
al. (1994) studied Rubinstein bargainers in an environment where the experi-
menters could observe which payoffs subjects considered when formulating their

30’Donoghue and Rabin discuss various levels of hyperbolic discounters’ self-awareness.
The choice of naifs for this project is based on Laibson’s results, but reinforced by the idea
that bandits for self-aware hyperbolic discounters are intractable.



offers. Subgame perfection requires that subjects backward induct from the last
stage payoff. Camerer et al. found, however, that subjects tend to look ahead
only one stage, neglecting last stage payoffs entirely. These subjects were using
a cognitive shortcut that required only the next stage’s payoffs to formulate an
offer.

Neelin et al. (1988) observed a similar phenomenon in alternating-offer bar-
gaining. They looked at two, three and five period games. In the longer games,
they observed the median first period offer was exactly the subgame perfect equi-
librium of the two period game. In this case, subjects are using a two period
truncated horizon, and not applying any adjustment for additional periods.

Behavior in dominance solvable games is also consistent with horizon trun-
cation. In beauty contests (Nagel, 1995; Ho, Camerer and Weigelt, 1998), cen-
tipede games (McKelvey and Palfrey, 1992) and the dirty faces game (Weber,
1999), subjects obey only one to three levels of iterated dominance, which cor-
responds to a solving a truncated version of the game.

Applying the same cognitive shortcut to bandit problems could lead to
present bias because the full future value of information acquired through exper-
imentation is not represented. What is not clear, however, is how the adjustment
factor responds to new information, the approach of the horizon, or the payoff
scale. Improper sensitivity of this adjustment factor could explain bandit data
which is not consistent with hyperbolic discounting. In addition, improper sen-
sitivity to payoff scale could explain Pratt, Wise and Zeckhauser’s observation
that price search is insensitive to the amount to be saved.

One advantage of this paper’s experimental approach is that it can distin-
guish hyperbolic discounting from horizon truncation, theories which are often
confounded in field problems. If the environment is stationary, meaning the
agent does not learn anything about the payoff distribution from receiving a
draw from the distribution and the horizon does not approach, hyperbolic dis-
counting and horizon truncation are not distinguishable. To a first approxima-
tion, job search and price search are both stationary, so these field studies could
not distinguish the two models. The experiment presented here is designed to
make a powerful distinction where these field studies cannot.

4 Formalizing the Experimentation Environment

To conduct a careful study of behavior in experimentation problems, the exper-
imentation environment must be formalized. This section builds the theoretical
foundations necessary to understand present bias in experimentation problems.
First, it introduces the multi-armed bandit, a formal framework for studying
experimentation. It then proceeds to explain how uncertain alternatives can
be valued using a certain alternative: the expected payoff from a certain al-
ternative which makes an agent indifferent between the certain and uncertain
alternatives captures the discounted present value of present experimentation.
A new theoretical result, that such a value exists for hyperbolic discounters, is
presented.



4.1 Multi-armed Bandits

The experimentation problems described earlier can all be formally modeled as
multi-armed bandits. The term bandit is used because each alternative can be
thought of as a different slot machine. Each alternative, or arm, has two levels
of randomness. First, an arm’s payoffs are are randomly distributed. Second,
one or more of the parameters of the arm’s payoff distribution are unknown,
but are drawn from known distributions themselves. In the case of the shopper
looking for orange juice, his favorite brand which he has tried many times is a
“known” average payoff arm, because he knows how much quality varies, and
has a very clear idea of how good it is on average. The new brand, on the other
hand, has unknown average payoff. The shopper has beliefs about how good it
is on average, and about how much it varies, but he does not know for sure; he
can update his beliefs by experimenting with the new brand.

In addition to a collection of arms, a multi-armed bandit must also have a
discount sequence which indicates the present value of payoffs received in each
future period. This is usually idiosyncratic to the agent. The agent combines her
beliefs about the likelihood of different average payoffs with her beliefs about the
variance of payoffs around the average to formulate a strategy which maximizes
the present discounted value of payoffs received.

4.1.1 Information Value

The key concept in bandit problems, and the one which will eventually be used
to identify present bias, is information value. The information value is the
present discounted value of the expected increase in future payoffs arising from
information gained by present experimentation. The consumer seeking orange
juice can select the new brand, assuming its uncertainty, but also expect to gain
from it. If the new juice is bad, he can switch back to his favorite brand next
time. But if the new juice is good, he will have found a better juice, which
he will buy and enjoy every period in the future and which he would not have
found if he had not experimented. The information value captures the expected
contribution to future payoffs arising from the possibility the new juice is better;
it reflects the possibility the new juice is bad only in the present period because
the shopper can switch back to his favorite brand.

If agents underestimate the information value, they will not experiment
enough and may lock onto an alternative which gave good payoffs early, but
which is not necessarily the one with the best average payoff. On the other
hand, if agents overestimate the information value, they will experiment too
much and waste choices on alternatives with low average payoffs. This intuition
provides the basis for the experiment described in Section 5. It asks subjects for
the information value they perceive from a single unknown arm. Their reported
information value can be used to test for present bias by comparing it to the
optimal information value for an exponential discounter.

10



4.2 Bandit Notation

For simplicity, attention is restricted to two-armed bandits. Otherwise, the
notation I use largely follows that of Berry and Fristedt (1985) who were also
concerned with variations in the discount sequence.

4.2.1 Arms

An arm consists of a distribution from which payoffs are drawn, a set of distribu-
tions from which the distribution of payoffs is selected and a prior over the set of
distributions. Let ) € D denote the distribution from which a payoff is drawn
when the arm is chosen, where D is the set of possible payoff distributions. The
agent’s prior over the elements in D is denoted G. Although the theory given
here works for general @), D and G, those who prefer concreteness may consider
@ to be a normal distribution with known variance o? and unknown mean ,
D the set of normal distributions with variance o? and p € R, and G a normal
distribution from which y is drawn with known mean v and known variance 72.

When an arm is selected, a payoff X is drawn from (). The agent uses Bayes’
rule to update her beliefs that () is a particular element in D. Let F on D denote
the updated set of beliefs. Further, let (X)F on D denote that the beliefs F'
have been updated to reflect the payoff X.

The two-armed bandits I consider will have one arm F', and a second arm
with a known @. Since @ will have only one parameter, the mean of the normal
distribution, this known arm will be denoted A, where A is the value of the mean
of the known Q.

4.2.2 Discount Sequences

A bandit consists of two elements: a collection of arms following the descrip-
tion above, and a discount sequence giving the discounted present value of
payoffs in future periods. A general discount sequence will be denoted A =
(a1,a0,a3,...), where a; denotes the relative value of payoffs received in pe-
riod ¢. In this notation, an exponential discount sequence is A = (1,6,42,...),
and a hyperbolic discounter’s discount sequence is A = (1, 36, 362,...). When
it is convenient, A will be used to denote the one-period-ahead continuation
of A, (O[Q, Qas, .. )

Given these elements, the two-armed bandits on which this paper focuses
can be written (F,\; A), where F' is the unknown @ bandit, A is the known
@ bandit, and A is the discount sequence. Of particular interest will be the
cases where A is exponential and hyperbolic, which will be denoted (F,\;4)
and (F, \; 3,0) respectively.

As mentioned above, this paper considers only naifs, hyperbolic discounters
who honestly believe that they will be exponential next period, but then are
not. The A notation for discount sequences does not adequately capture this,
for it typically assumed that A®) = (as,as,...,ar_1,ar), but this is not the
case for the naif. In fact, A®) is A again, or if the horizon is finite, A(") =
(a1,a9,...,a7_1,0). This is not a problem for the analysis here because the

11



naif acts on his (erroneous) belief in the present period; I only need to consider
the problem he is solving.

4.2.3 Strategies, Worths and Values

A strategy in a bandit is a series of history-dependent arm selections o, desig-
nating an arm choice in each period for each possible F' in that period. The
worth of a strategy (what it is expected to pay) is given by

W(F,\ A;0) = Ea[i ar X;] 3)

where X, is the payoff received at time 7 from whichever arm is prescribed by
o given the F' at time 7.

The value of the bandit is the expected payoff given that the agent plays the
optimal strategy (assuming it exists),

V(E, X\ A) =supW(F, \; A;0). 4)

Two other expressions of value are of interest. Let V¥ (F,);35) be the
value of selecting F' in the current period and then continuing optimally and
VA(F, \; Bd) be the value of selecting X initially and then continuing optimally.

VI (F, \; 88) = E[X|F] + BSE[V ((X)F, A;9)] ()
VA(E,X; B0) = X+ BV (F, X; 0) (6)

These expressions will be useful in computing /.

4.3 Bandit Theory with Hyperbolic Discounting

The (F, A; A) bandit studied here was chosen because the A arm can be used
to value the F' arm. The value of A for which the agent is indifferent between
selecting the two arms is what is known as a dynamic allocation index, or a
Gittins index (Gittins, 1989), of arm F. The Gittins index is the sum of the
expected payoff from F, E[X|F], and an information value which reflects the
expected gain to future payoffs arising from the information acquired through
experimenting with F in the current period.*

For the consumer seeking orange juice, his longtime favorite brand would
be “known” arm with “known” expected payoff A\. The new brand gives an
uncertain payoff, so it is the F arm.

4The Gittins index is of particular interest in the case of exponential discounting and
multiple uncertain arms. Gittins and Jones (1974) showed that if a Gittins index is calculated
for each arm separately, the optimal strategy is to select the arm with this highest Gittins
index in each period.

12



4.3.1 Hyperbolic Discounting and Optimal Stopping Problems

Actually solving bandits with a hyperbolic discount function is considerably
more difficult than in the exponential case. The exponential problem can be
(relatively) easily solved because it is an optimal stopping problem: once the
agent chooses the A arm, he will choose the A arm in every remaining period
(because nothing new is learned about F'). This is not true for the hyperbolic
discounter, however. She can choose the A arm in the current period, believing
she will experiment with the F' arm in the next period. Without the optimal
stopping property, solving the bandit is a far more (computationally) intensive
process.?

Berry and Fristedt characterize the set of regular discount sequences, or
those discount sequences for which a bandit is an optimal stopping problem.
The following proposition confirms the intuition of the paragraph above that
the hyperbolic discounter does not have an optimal stopping problem.

Proposition 1 The hyperbolic discount sequence is not regular.

Proof : Please see Section A.1.

Because regularity makes bandits tractable, most work has focused on reg-
ular discount sequences. Understanding how hyperbolic discounters should be-
have in bandits requires additional theoretical foundations.

4.3.2 Existence of an Optimal Strategy

First, it is important to know whether an optimal strategy exists. Berry and
Fristedt use a standard argument to show that an optimal strategy exists for
all possible discount sequences if there are a finite number of arms.

Theorem 1 (Berry and Fristedt, 1985) There exists and optimal strategy o*
for all possible priors G on D and all possible discount sequences A.°

Their proof proceeds by demonstrating that there exists an optimal strategy
for any finite horizon and then sending the horizon to infinity. For any finite
horizon, there is a finite number of possible strategies (number of arms X length
of horizon). Since any function has a maximum over a finite number of points,
there is an optimal strategy for any finite horizon. Sending the length of the
horizon to infinity gives general existence.

4.3.3 Existence of a Dynamic Allocation Index

The experiment described in Section 5 uses the dynamic allocation index, A, as a
measure of value for the ' arm. In order for these inferences to be meaningful, it
is necessary to establish that the dynamic allocation index represents the value
of F' for the hyperbolic discounter.

5Briefly, optimal stopping problems are simple because the continuation value of choosing
the A arm is E_T:O 67\, or ﬁ for infinite horizons. If the optimal stopping property does
not hold, the value of choosing A is a recursive calculation.

6This is a reader-friendly, if less precise, restatement of their Theorem 2.5.2.
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Theorem 2 For each nonincreasing discount sequence A with A # 0 and oy >
as and each distribution F' on D, there exists a unique function A(F, A) such
that the F arm is optimal initially in the (F,\; A) bandit if and only if A <
A(F, A) and the X arm is optimal initially if and only if A > A(F, A).

Proof : Please see Section A.2.

This is the primary new theoretical result in this paper. The result based
on the fact that V(F, \; A) is continuous and increasing in A. This implies that
VF — VX is strictly decreasing in A. Roughly, this is true because A is chosen
earlier in the strategy sequence giving value V*. Because nothing is learned by
choosing ), the optimal sequence of A choices giving V ((X)F, X\; A1) is similar
to that giving V(F,X; A). This proof is difficult because it is necessary to
show that the value of information acquired from initial choice of F in V¥ does
not disrupt this relationship.

Given this result, the following proposition is easy to prove.

Proposition 2 For a hyperbolic discounter with 8 < 1 and for each distribution
F on D, there exists a unique function A(F, A) such that the F' arm is optimal
initially in the (F,X; A) bandit if and only if X < A(F,A) and the A arm is
optimal initially if and only if A > A(F, A).

Proof: Please see Section A.2.
For 8 < 1, Theorem 2 establishes existence. For f = 1, the discount sequence
is regular, so the existence result for regular discount sequences applies.

4.4 Properties of the Dynamic Allocation Index

Given that there exists a value of A such that hyperbolic discounters are indif-
ferent between F' and A, this value can be used to determine (3 in two ways.
First, revealing that A = ¢ makes them indifferent implies V¥ (F,¢;3,0) =
VA(F,¢; B,6), where £ is the subject’s reported dynamic allocation index. We
can use Equations 5 and 6 to solve

B ¢ — E[X|F]
b= S EV(X)F 6:0)] - V(F.6:8))"

(7)

Because the values in the denominator are just stopping problems, their solution
is not recursive. The expectation E[X|F] is known, and £ is the value the agent
reports as the dynamic allocation index.

Unfortunately, the quality of the approximation of the terms in the denomi-
nator is important, and accurate approximations are difficult if £ is substantially
larger than \*, the optimal value of X for the exponential discounter.” An alter-
native measure of 3 is the information value ratio. The information value ratio

"The reason is that if £ is large enough, then it is optimal to choose the A arm initially in
both the denominator terms unless the X in E[V((X)F, ¢;4)] is very large; this low probability
event determines the difference between the two terms in the denominator. Because the most
common method of approximation is to truncate the distribution of payoffs near the tails, the
error will be large relative to the values, meaning estimates of 8 will vary widely.

14



is
¢ — E[X|F]

I(F LX) = 5= 5 B[] (8)

This ratio does not give 3, but it is always on the same side of one, so it is
sufficient for present purposes. Information value ratios less than one suggest
present bias, and information value ratios greater than one suggest a future bias.

5 Experimental Design

This experiment has two objectives. The first is to determine whether or not
there is present bias in multi-armed bandits, and the second is to distinguish two
possible causes of present bias. The existence of present bias can be established
by comparing subjects’ information values with the optimal information values
of exponential discounters. This can be done by looking at the information value
ratio, or by looking at #. Hyperbolic discounting requires that s be constant
as information is acquired and the horizon approaches, but horizon truncation,
through its adjustment factor, allows for variations in .

5.1 Incentive Compatible Dynamic Allocation Index Elic-
itation

Proposition 2 proves that there is a unique value of the known mean arm for
which a subject is indifferent between the two arms. Equation 7 shows how a
subject’s £ can be used to determine §, which in turn can be used to test the
predictions of hyperbolic discounting and horizon truncation. Thus the first
design challenge of this experiment is to incentivize subjects to reveal truthfully
the value of ¢ which makes them indifferent.

Proposition 2 claims that if A(F, A) makes subjects indifferent, then they
should pick the A arm if its value is greater than A(F, A), and F' if X is less than
A(F, A). One way to incentivize subjects’ reported dynamic allocation indexes
is to make choices for them based on their reported £s. For instance, if a subject
reports £ < A(F, A) and the arm choice is based on ¢, then there are values of
the A arm for which the A arm would be chosen when the subject would prefer
the F' arm; if £ = A(F, A), there is no chance of this happening. This intuition
suggests the following mechanism:

1. Endow each subject with an arm F' with an unknown payoff distribution
drawn from a set of distributions D.

2. Explain to them that there is a second arm, A, with a known average
payoff of value A which will be randomly drawn from some distribution
with support R.

3. Before announcing the value of A, ask each subject for a value ¢;, the
minimum value of A for which he or she would be willing to choose the A
arm in the current period.
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4. Announce the value of A\. Fix the A arm at that value for the remainder
of the horizon.

5. For subjects with ¢; < A, force them to select the A arm in the first
period, but then allow them to proceed optimally, choosing the F' and A
arms as they wish for all remaining periods. For subjects with ¢; > A,
force them to select the F' arm in the first period, but then allow them
to proceed optimally, choosing the F' and A arms as they wish for all
remaining periods.

Proposition 3 Suppose A(F, A), the dynamic allocation index for the arm F
given A, exists and is unique. Then £ = A(F, A) is the unique optimal value of
£ for a subject to report in the mechanism in this section.

Proof: The proof follows the intuition given above and is presented in Section
A3.

Since Proposition 2 proves A(F, A) exists for hyperbolic discounters, this
mechanism can be used to elicit the dynamic allocation index in the first period
of any bandit problem. However, once the value of the A arm is known, the
subjects need not report their true £ to receive the choice they want; this data
would be much less reliable. A slight modification of the above mechanism can
be used to get reliable fs in more than one period. Rather than revealing the
value of X in the first period, randomize the period in which the value of X is
revealed; subjects can be forced to pick F' in the periods until X is revealed.
As long as the choice of £ affects the payoff with positive probability, subjects
should still report £ truthfully. Because they do not have a choice if A is not
revealed, they cannot behave strategically. If A is not revealed, subjects can
use the payoff from F' to update their beliefs about F' and report a next period
£ based on their updated beliefs. This allows collection of reliable data on a
variety of beliefs, and with different horizons.

5.2 Bandits

This mechanism for truthfully eliciting dynamic allocation indexes requires a
known mean arm A and an unknown mean arm F'. In this experiment, the F'
arm gives payoffs drawn from a normal distribution with 0> = 100 and a mean,
u, distributed N(v,72) where v = 1 and 72 = 25. The known mean arm also
has variance of 100, to control for risk aversion.® Its mean is randomly selected
from the same N(1,25) distribution as the mean of the unknown arm. The
value is announced in the randomly determined period in which it is chosen.
Each bandit lasted for 10 periods, and each experimental session consisted
of ten rounds. At the beginning of each round, new means for F' and A were

8These two levels of randomness in bandit arms have precise meanings in the terminology
of risk and uncertainty. Risk is variance of the payoff distribution, and uncertainty is the
variance in the distribution of the mean of the payoff distribution. These two arms are
equally risky, so risk aversion cannot be a factor in behavior. What differs across arms is the
level of uncertainty; uncertainty aversion may be a factor in this environment.
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chosen. Subjects were told the shape and variance of the distribution from
which their payoffs were drawn, as well as the shape, mean and variance of
the distribution from which the mean of the payoff distribution was drawn. To
emphasize the two-level nature of the randomness (i.e., that the mean of the
distribution of payoffs itself has a distribution), the problem was posed as one
of balls and urns, a familiar device for explaining randomness in experiments.
Subjects were told there were two identical sets of urns with numbers on them;
they could see the numbers on one set (the As), but could not see the numbers
on the other (the F's). The payoff distribution was explained by saying there
was an identical set of balls in each urn, and each ball had a number on it. The
payoff was the sum of the number on the urn and the number on the ball. The
probability distributions were conveyed using frequency tables, and by explicitly
mentioning the parameters of the normal distribution in the instructions.

5.3 Other Design Features

Because I am primarily interested in how the information value behaves once
subjects understand there is a value to experimentation, the instructions in-
cluded a brief section about strategy.® Subjects were told that the information
value arises from possible benefits in expected future payoffs, but were left to
determine the magnitude on their own. To reinforce the instructions, the infor-
mation value was featured on a quiz over the instructions, whose answers were
explained before the experiment began, and during a guided practice period
where the potential cost of an £ which is too low was emphasized.

To simplify the subject’s task, and to make sure the difference between the
reported £ and the expected value of F' could be interpreted as an information
value, subjects were provided with E[X|F]. The evidence that experimental
subjects can effectively apply Bayes’ rule is at best mixed (Kahneman and Tver-
sky, 1972; see Camerer, 1995 for a review), so to avoid confounding my results
with incorrect updating, I computed the Bayesian estimate of E[X|F] and la-
beled it the “best guess” at the number on the unknown mean urn. Subjects
were instructed that this “best guess” was arrived at using a law of probability
called Bayes’ rule.t?

To encourage subjects to think carefully about the values of £ they reported,
I used a bracketing mechanism to ask a sequence of questions to isolate the value
of A which made subjects indifferent between the two arms. I allowed values
in [-15,30]. A test value, ¢, was randomly chosen between these two endpoints.
The subject was then asked, “Would you choose the [known mean arm] this
period if its [known mean] were £?” Subjects could click “Yes” or “No” buttons;

9A pilot run without this instruction suggested that it took a long time for subjects to
realize there was an information value; including the instruction significantly reduced noise
in the data. Whether or not people recognize that this value exists in general problems is a
separate question.

10 A few subjects explicitly rejected the best guess. Most claimed looking only at past payoff
realizations provided a better estimate, suggesting that the neglect of base rates may be more
than a cognitive shortcut.
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“Yes” focused subsequent questions on lower values of 57, and “No” focused the
search on higher values of £. The questions continued with different values of
£, until the £ that made subjects indifferent was identified to the nearest 0.05
francs (0.4 cents).

To simplify analysis of the data, the random numbers used for payoffs were
taken from a published random number table. This guaranteed randomness,
but also ensured that each subject saw the same sequence of payoffs and arm
values. This is important because, although computing the optimal index is a
stopping problem, it is still computationally intensive. Having every subject
make decisions based on the same set of beliefs greatly reduced the set of beliefs
for which an optimal solution had to be computed.

5.4 Subjects

The subjects for this experiment were 23 Caltech undergraduates. Caltech un-
dergraduates are a particularly good sample for this task because it is complex,
and they have been selected for admission to Caltech because they are analyti-
cally gifted. They also represent a “best chance” for optimal strategies because
they are more likely than other populations to be able to formulate and solve
the dynamic programming problem which yields the optimal solution; if anyone
does not need to use cognitive shortcuts, it is these subjects.

Payments to subjects averaged $20, with a maximum of $21 and a minimum
of $10 for about 1 hour and 45 minutes of work. To verify that subjects un-
derstood the task, a debriefing questionnaire asked them to describe the task
and their approach to it. Subjects’ comprehension was good, except for two
subjects who seemed to have difficulty with English and had to be excluded;
these were also the two lowest-earning subjects. A third subject was excluded
for answering “3” for almost every £. Parts of the data from three other subjects
were excluded. One subject said he was confused in the first four rounds and
suggested his data be excluded. A second subject answered £ = 0.05 for every
query after the sixth round. A third subject expressed lexigraphical preferences,
selecting £ =~ 30 (the maximum allowed), and indicating on his debriefing ques-
tionnaire he would have selected higher had it been possible.!' In each case,
the data retained from these subjects are not idiosyncratic.

6 Results

Figure 1 shows the information values from a typical subject. Since the A arm
was introduced at random, each round provides a different amount of data: one
period in rounds 1, 3, and 9, two periods in rounds 2 and 7, four periods in
round 5, six periods in round 4, and seven periods in rounds 6, 8 and 10. Since
each subject saw the same random number realizations, the fs elicited in each

H1nterestingly, the minimum number of times he felt he needed to select F before consid-
ering A decreased across rounds.
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Figure 1: Information values reported by a typical subject.
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round are based on the same payoff histories and thus can be aggregated or
compared directly.

In optimal play, information values would begin at about 8.48 and then
decrease, roughly exponentially, in later periods. The data do not follow this
pattern. This subject’s first period information values are low, around 1, a
typical value for many subjects. This means the subject clearly understood that
there was an information value, but did not have a good sense of its magnitude.

After the first period, this subject’s information values fluctuate some, but
generally decrease. This pattern was common. Subjects understood that the
value of additional information fell as they learned more and the horizon ap-
proached, but they also tried to understand the effect of different information
values. Testing different values was difficult because the F' and A arms were
rarely close enough for a reasonable £ to indicate the wrong arm; this is not a
flaw of the experimental design so much as a property of the bandit environment.

In this subject’s data, rounds 4 and 6 are notable exceptions to the general
pattern of decreasing information values. In these rounds, the true mean of the
F arm was significantly negative, and this subject and many others were more
hesitant than optimal to lower their ¢s in response to the expected payoff from
the F' arm.

Figure 2 presents a box-and-whiskers plot of the information value ratio
defined in Equation 8, pooled by period across subjects and rounds. The box-
and-whiskers plot indicates the distribution of the data at five points. The wide
horizontal line indicates the median response in that period. The gray box
covers the middle 50% of the data, and the “whiskers” cover the middle 90% of
the data. The black dot in each period represents the mean response.

The overwhelming pattern in the data is that the information value ratios
start below one, suggesting present bias, and increase as more information is
acquired and the horizon approaches. At first glance, this is not consistent
with hyperbolic discounting, which predicts that ratios should always be below
one, and is consistent with horizon truncation with an adjustment factor which
begins too small, and then does not adjust quickly enough.

This section’s objective is to test which of the patterns in these pictures
are statistically significant. If there is significant present bias, the data can be
compared with the predictions of hyperbolic discounting and horizon truncation,
giving insight into behavior in bandit problems.

Result 1 First period s are significantly below optimal, consistent with present
bias.

Support: Figure 3 shows the /s observed in the first period of each round.!?
This box-and-whiskers plot is interpreted the same as Figure 2, except that
the whiskers cover only 80% of the data. The exponential-optimal value of
9.48 is indicated by the horizontal line spanning the graph. Only 25 of 182

12The subject with lexigraphical preferences is omitted from this graph. He chose a value at
or near 30 every period and indicated that he would have chosen higher had it been possible
to do so.
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Figure 2: Box-and-whiskers plot of information value ratios across periods.
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total observations are at or above the exponential optimum, and three subjects
account for 20 of them. Based on this graph, it appears that first period /s are
considerably below optimal.

That average choices are below optimal can also be tested on a subject-by-
subject basis. Table 1 presents the means, standard errors and the p-values for
the one-tailed t-test that mean information values are greater than or equal to
the optimal value of 9.48. Even with this fairly small sample from each subject,
the hypothesis that the mean is greater than or equal to the optimal value is
rejected for 15 of the 19 subjects. This provides clear evidence for first period
present bias.

To get some idea of what this level of present bias implies within the context
of hyperbolic discounting, consider that the § that corresponds to an average
response of 4.46 is 0.594. This is a little smaller than the g = .70 reported by
Laibson (1997) in his field studies. However, it is not correct to interpret this as
an average [ because the transformation from £ to 8 is not affine; s grow very
quickly as the information value ratio exceeds one. The value of 3 at the mean £
is reported because it is very difficult to compute accurately the denominator of
Equation 7 when the information value ratio is significantly above one; a couple
outliers dramatically affect the mean.

Since this is an unfamiliar and somewhat abstract environment for subjects,
it is possible that present-bias is an artifact of their unfamiliarity. If this is true,
then they should learn to behave optimally, and thus appear less present biased,
as they gain experience in the environment.

Result 2 The first period information values do not increase in later rounds.
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Subject Mean Std. Err. p-value

1 3.44 0.50 3.4E-07
2 1.13 0.02 34E-13
3 2.63 0.97 3.0E-05
4 9.00 0.37 0.11
) 8.30 3.22 0.36
6 1.93 0.17 4.8E-12
7 4.03 0.37 6.5E-08
8 5.00 0.03 5.5E-17
9 1.02 0.01 1.0E-24
10 -0.24 1.41 3.6E-05
11 2.56 0.20 4.2E-11
12 1.40 0.12 8.6E-14
13 0.33 0.21 6.1E-08
14 0.40 0.11 1.7E-14
15 11.59 2.85 0.76
16 -1.04 2.02 2.8E-04
17 3.04 1.01 6.4E-05
18 25.60 0.40 1.00
19 1.76 0.16 1.9E-12
Total 4.46 0.53 5.0E-18

Table 1: Subject-by-subject mean first period fs, with one-tailed t-test that

Coefficient  Value Std. Err. t P> |t 95% CI
Yo 481 .228 2.110 0.049 .002 .960
Yiag .848 .081 10.446 0.000 .678 1.019

Table 2: Results of lag regression. The summary statistics are F(1,18)=109.11
and R? = .728.
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Period Obs Mean 95% CI Median 95% CI
1 182 0.41 0.29 0.53 0.11 0.08 0.17
131 1.50 1.20 1.81 0.92 0.75 1.22
95 231 166 2.96 1.56 0.80 2.16
97 2.21 1.64 2.78 1.37 0.77 2.28
78 2.77 1.94 3.60 1.45 0.71 2.26
78 3.74 196 5.51 1.58 0.85 2.05
58 425 190 6.61 1.36 0.27 2.03

N O Ut W N

Table 3: Mean and Median information value ratios for each period.

Support: To test whether first period information values approach optimality,
I use a simple lag regression:

Ti = Y0 + ViagZt—1 for t>2. (9)

Table 2 presents the results of this regression, with White-adjusted standard
errors. If subjects were learning to increase their information values in the first
period, yqg would be greater than one. The estimated 744 is not statistically
greater than one; it is almost statistically less than one. The limit of this lag
process is given by ljyolag = 3.16, so only subjects with £ < 3.16 were increasing
their information values in later rounds; subjects with higher information values

were decreasing them, on average. The one-tailed p-value for 1_7;)1 being below
ag

the optimal value of 9.48 is 3.63 x 10~2. Therefore, I conclude that subjects
were not learning to increase their information values in later rounds, so first
period present bias is robust to experience.

These results replicate the present bias observed in search problems, suggest-
ing present bias affects bandit behavior. However, this experiment establishes
some special circumstances which provide the opportunity to observe informa-
tion values where they could not be observed in the field. Because subjects are
forced to choose F' when they would not have had there been another choice,
we can learn about how information values change with beliefs and the horizon.

Result 3 Second and later period mean information value ratios are higher
than exponential optimal, suggesting a future bias, but median values are close
to optimal. The shift from present bias to future bias cannot be explained by
hyperbolic discounting.

Support: Looking at the later periods in Figure 2, there seems to be a clear
trend toward higher mean information value ratios as time passes. This intuition
can be tested by looking at the mean responses in each period. Table 3 shows
the mean information value ratios for each period. Every period after the first
has a mean information value ratio significantly above one. Further, there is a
clear trend toward higher ratios in higher periods; only between periods 3 and
4 is there a small (insignificant) decrease.
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Estimate Std. Err 95% CI

Segment 1 g 0.57 0.86 -1.11 2.25
75%  YVoetief -0.10 0.05 -0.20 0.00
Yperiod 0.32 0.28 -0.22  0.86

Q -0.39 0.83 -2.02 1.24
Segment 2 g -0.35 1.66 -3.61 291
25% Yoelief -0.22 0.06 -0.34 -0.10
Yperiod 0.93 0.35 0.25 1.61

a 0.66 0.42 -0.17  1.49

Table 4: Multicycle ECM estimates of two-segment regression model.

However, Figure 2 suggests the mean may not be the best description of the
data. Although there is a clear upward trend in the mean, Table 3 indicates
the medians are not statistically distinguishable from optimality (Mosteller and
Rourke, 1973). This suggests some of the subjects have increasing information
value ratios, but that most do not.

To test this two-segment population hypothesis, I use a multicycle expectation-
conditional maximization (ECM) algorithm (Meng and Rubin, 1993) to estima-
tion a two-segment weighted least squares model on the second through seventh
period information value ratios. The model regresses the information value ra-
tio against the period number, controlling for E[X|F]. Heteroskedasticity is
modeled by o7 = 0?t®, where « is a parameter to be estimated.

The objective is to find the two sets of model parameters and the assignment
of subjects to parameter sets which is most likely given the data. My approach
treats the parameter set which generates each subject’s data as “missing data;” if
I knew which subjects were in which segment, I could simply estimate the model
separately on each segment. Instead, for any pair of parameter sets, the EM
algorithm uses Bayes’ rule to update an (estimated) prior to compute the rela-
tive likelihood that each parameter set generated each subject’s choices. These
probabilities are then used as weights to reestimate the two parameter sets.
McLaughlan and Krishnan (1997) summarize the theoretical conditions under
which iteratively updating probabilities and reestimating parameters converges
to the maximum of the (complete data) log likelihood function.

Table 4 presents the parameter estimates for the two segments, as well as the
size of each segment. As Figure 2 suggested, about a quarter of the population
has significantly increasing information value ratios, while we cannot reject that
information value ratios are constant for the other three quarters. For the
first group, we can reject that hyperbolic discounting is the dominant factor in
experimentation behavior. Because their information value ratios increase from
below one to above one, we must conclude their 8s do also, but this inconsistent
with hyperbolic discounting. This test is not strong enough to reject hyperbolic
discounting for the rest of the population, though the increase over the first
period in their information value ratios suggests that their 8s may be increasing
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Period Obs Mean Std. Err. 95% CI
1 110 3.53 0.72 2.11 4.96
93 4.00 0.55 291 5.09
76 3.30 0.52 227 4.33
77 2.50 0.42 1.67 3.34
58 2.14 0.43 1.27 3.00
58 2.71 0.78 1.15 4.27
58 2.01 0.55 0.90 3.12

N O U W N

Table 5: Mean information values for each period for Rounds 5-10.

as well.

Horizon truncation, on the other hand, may not appreciate the extent to
which the horizon approaches and may not fully appreciate the degree to which
information acquired in the first period benefits later payoffs. The data are
consistent with a model of horizon truncation with an adjustment factor which
does not adjust enough as information is acquired and the horizon approaches.
Hyperbolic discounting may still contribute to present bias, but only as the
discount sequence of the truncated horizon problem.

One problem with the horizon truncation model as it is specified here is that
it is not falsifiable. The model says very little about the “adjustment factor,”
and without restrictions on its possible values, any pattern of information value
ratios is consistent with the model. One desirable feature in the adjustment
factors is that they do not increase over time. A rough test of this, abstracting
from the value computed for the shortened horizon, is that the information
values decrease over time.

Result 4 The information values decrease from period to period, consistent
with an intuitive restriction on horizon truncation.

Support: Table 5 presents the mean information values for Rounds 5 through
10. In these rounds, there is no significant increase in the mean information
value from one period to the next. Including the first four rounds introduces a
statistically significant increase from the first period to the second. Experience
taught subjects with very low first period information values that they should
be higher, and subjects who did not decrease their /s in response to negative
E[X|F]s that they should be more responsive, so the difference is erased in later
rounds.

Table 6 presents the results of the random effects regression on the last
six rounds; these results are robust to the inclusion of the first four rounds.
The significantly negative coefficient on period indicates that information values
are declining across periods. Although this does not explicitly control for the
information value computed from the truncated horizon, it does place an upper
bound on the adjustment factor in each period. This is consistent with the
restriction that the adjustment factor be decreasing from period to period.
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Coefficient  Value = Std. Err. t P> |t 95% CI

Yo 4.048 .792 5.111  0.000 2496 5.601
Voelief -.152 .020 -7.525 0.000 -192 -.113
Yperiod -.314 .091 -3.474  0.001 -492 -.137

Table 6: Results of random effects regression of the information value on period
for Rounds 5-10. The summary statistics are x2 = 66.0 and R? = .083.

7 Discussion

This paper was designed to fill two gaps in our understanding of behavior in ex-
perimentation problems. First, it hoped to establish whether or not the present
bias which has been observed in search problems is also represented in the more
general environment. Second, given that present bias generalized, it hoped to
distinguish between two competing explanations for present bias.

Looking at first period choices, the evidence from the experiment presented
here supports present bias in the bandit environment. Later period evidence,
however, suggests that agents do not remain present-biased as they acquire infor-
mation; rather, most subjects behave nearly optimally, and a substantial portion
of the population appears to become future biased. These results are consistent
with observing only present bias in studies of search. The environments studied
are stationary, so there is no opportunity to observe choices which, like later
period choices in this experiment, reflect updated beliefs and an approaching
horizon.

That agents rarely encounter such circumstances outside the lab may be a
partial explanation for the later period overexperimentation observed in this
experiment. Had the A arm been available after the first period in every round,
few subjects would have experimented in the second period. Few naturally
occurring bandits force subjects to experiment. These results suggest that once
he buys the new brand of orange juice, the shopper is more likely than optimal
to buy it again. However, he is never forced to buy the new brand in the first
place, and so never encounters his tendency to overexperiment.

This behavior poses a challenge for the policymaker, for she must decide
whether it is worse to allow agents to continue to underexperiment, or to im-
plement a policy which encourages initial experimentation, but which may lead
to overexperimentation. I argue that, in almost every case, overexperimenta-
tion is the more desirable outcome. The reason is that the agent has both the
incentive and the information to correct his behavior once he has experimented
too much. Once he has bought the new orange juice a second time, he has the
opportunity to regret his purchase and modify his behavior; he has both the
incentive and information necessary to learn to experiment less. It is difficult
to learn to experiment more, however, because the underexperimenting agent
does not have the information necessary to determine that he is not optimizing;
he does not know what he is missing.
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Choosing the correct policy to help agents overcome their present bias in the
first period requires understanding its cause. The second objective of this exper-
iment was to test two models which predict present bias. A significant fraction
of the population in the experiment made choice which are not consistent with
hyperbolic discounting being the dominant factor in experimentation behavior.
Hyperbolic discounting predicts that the value of 8 will be constant across pe-
riods. Although the information value ratio is not 3, it is always on the same
side of one. That the information value ratio is below one in the first period
and above one in the later periods indicates f is also, meaning it is rising over
time. This is inconsistent with the model, and we therefore must consider that
hyperbolic discounting is not the only thing preventing agents from behaving
optimally.

However, this does not mean that hyperbolic discounting is not a factor in
experimentation problems outside the lab. Subjects in this experiment are paid
one time at the end of the session, so time discounting per se seems an unlikely
factor in behavior. Any discount rate effect would have to be attributable to
some sort of time illusion in which their discount sequence is sensitive only
to a number of periods, rather than the length of periods. Further, in some
activities, such as saving for retirement, there are factors such as the advice
of experts or cultural norms which influence people’s behavior. These norms
would not translate well to an abstract environment such as the one presented
here.

Even if hyperbolic discounting is a significant factor in the field, its effect
may be swamped by that of horizon truncation, which is the major cause of
first period underexperimentation in this controlled environment. Rather than
placing a high initial value on experimentation and then decreasing it expo-
nentially as with optimal information values, subjects seem to place moderate
initial value on experimentation and then decrease it linearly. This corresponds
to a model of horizon truncation where the the adjustment factor is initially too
small, but then does not decrease quickly enough as information is acquired.
The data from this experiment are consistent with an intuitive restriction on
this model, that the information values be decreasing over time.

It is important to note that these explanations augment Cox and Oaxaca’s
claim that risk aversion is the primary factor causing people to stop searching
for jobs too soon. Because the two arms in this experiment are equally risky,
risk aversion would predict optimal behavior in this experiment. That agents
still do not experiment enough when faced with equally risky alternatives means
risk aversion is not the only factor affecting search.

In some applications, whether hyperbolic discounting or horizon truncation
causes present bias is critical in formulating public policy. Della Vigna and
Paserman (1999) argue that job finding bonuses which reward the unemployed
after they have held a job for a number of weeks may be too distant to sig-
nificantly aid hyperbolic discounters. This is not necessarily true for horizon
truncaters. Such an incentive would not influence their short-horizon value,
but it may increase their “adjustment factor.” Significant rewards in the future
may influence the decisions of the present biased through the adjustment fac-

28



tor; before dismissing these programs as ineffective, this hypothesis should be
investigated with field data.

In other applications, public policy is unnecessary because other agents in
the economy may have an interest in helping agents overcome their present
bias. For instance, companies introducing new brands and stores with low prices
would both like consumers to experiment with them. If these agents know of
consumers’ present bias, they can take steps to encourage experimentation. A
company with a new brand might offer free samples at the supermarket or
through the mail, or generous coupons. Stores with low prices may aggressively
advertise, or even, as some new dot-coms are doing, offer first purchases for free.
These measures all encourage experimentation which will benefit the consumer
in the long run.

If agents are aware of their present bias, they may also be willing to pay
experts to help them avoid underexperimentation. While bandit problems are
difficult to solve, an expert with a computer program can come much closer to
optimality than this experiment has demonstrated even the most analytically
capable non-experts can. Hiring an expert to make exploration decisions may
significantly improve profitability by preventing costly overexperimentation or
hasty recovery decisions.

In certain circumstances, individuals can also rely on expert advice. There is
no shortage of expert advice on some intertemporal decisions, such as saving for
retirement. Experts, both personal and in the media, constantly remind people
to take advantage of tax incentives, employer matching plans. In this case,
expert advice supplied by the private market and public policy are effectively
combined so that people do not need to solve a dynamic programming problem.
They can follow the experts’ advice and will end up with an acceptable level of
savings, if not one carefully tailored to their preferences.

Unfortunately, while some agents have incentives to assist present biased
firms and consumers, there are also incentives to exploit them. Present bias
suggests agents may be especially susceptible to bait-and-switch scams, or to
misleading advertising. A consumer drawn to a store based on a low advertised
price can easily be manipulated into buying a substitute product at a higher
price because she is disinclined to conduct a price search on the new product.
In these cases, public policy is needed to help present biased agents. Laws like
the recent regulations requiring car dealers to clearly disclose down payment
and financing information on leases can help present biased consumers avoid
situations where their present bias would lead them to compromise their future
welfare.

This experiment has demonstrated that agents do not experiment enough,
and that their experimentation pattern is more consistent with horizon trunca-
tion than hyperbolic discounting. However, this is far from a complete picture
of how present bias (and future bias) operate in experimentation environments.
This experiment suggests a number of avenues for future research. First, this
analysis does not indicate whether people are hyperbolic in their truncated hori-
zon problem. Understanding if hyperbolic discounting plays a role in addition
to horizon truncation requires more sophisticated econometric models and will
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be the focus of additional work in the near future.

Second, even this additional analysis will only detect if hyperbolic discount-
ing is present in the laboratory environment, where there is no real time struc-
ture. If there is no time illusion, present bias could not be detected here, even
if it is an economically important phenomenon. It would be nice to locate some
field data which would allow a distinction between hyperbolic discounting and
horizon truncation, but I suspect this would be difficult. A possibly easier av-
enue would be to design an experiment with true time structure, where decisions
were made on a daily or weekly basis for a long period of time.

Third, these results suggest that agents formulate “adjustment factors” to
account for periods they omit from any explicit solution to the problem. Pratt,
Wise and Zeckhauser’s observation that agents are not sensitive to the payoff
scale of the search problem suggests that studying how the adjustment factors
respond to changes in the environment may prove insightful. Additional labora-
tory work could systematically vary the variance of the arm payoffs, the variance
of the priors, the payoff scale and the length of the horizon. Adjusting these
factors could help focus policy efforts by identifying features of environments in
which people are especially present biased.

Finally, future research might take an entirely different approach to the prob-
lem. This paper explores a complicated economic decision as a whole, abstract-
ing from factors such as formulation of the dynamic programming problem,
solving it through backward induction and Bayesian updating. Future work
could use this experiment to direct inquiry into particular features of dynamic
programming using simpler frameworks. This would allow study of problem
components, which could then be built into a larger model of bandit behavior.
If agents actually solve the problem by breaking it into these components, this
could prove particularly valuable, and would have the added benefit of making
discoveries which could be applied to a very wide range of problems.

With the additional information provided by these avenues of research, we
can gain some insight into how people approach economic experimentation. This
experiment confirmed the prediction that people are initially present biased;
from an economic standpoint, there is little comfort in the fact that they later
experiment too much because they do not experiment the first time to reach
that stage. More work can expand this understanding, which can then be used
to help craft policies and corporate strategies to aid individuals and firms in
problems where the proper amount of experimentation is necessary to maximize
welfare.
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A Proofs of Propositions

A.1 Non-Regularity of the Quasi-hyperbolic Discount Func-
tion

Berry and Fristedt (1985) characterize the set of discount sequences for which a
bandit reduces to an optimal stopping problem. Knowing this is important be-
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cause optimal stopping problems are much better understood, and much easier
to compute solutions for, than the general bandit problem.

Definition 1 For any discount sequence A = (a1, 0, a3,...), lety, = 307, ar.
Then A is regular if, fort =1,2,...

Yi+2 < Yi+1 (10)
Yi+1 Yt
provided that v, > 0.

Unfortunately, intuition tells us the quasi-hyperbolic discount sequence may
not be regular. The hyperbolic discounter is tempted to put off experimentation
to next period, taking the known-mean arm now; while he selects the known-
mean arm in the current period, he expects he will return to experimenting in
the next period. The next proposition confirms this intuition.

Proposition 1 The quasi-hyperbolic discount sequence is not regular.

Proof: First I compute 71, 72 and 3, then I use these to check the definition
of regularity. Note that the choice of ¢ = 1 is important here, for choosing
t # 1 does not contradict regularity; proving the definition is not satisfied only
requires locating one t for which the condition is not satisfied.

From the definition of quasi-hyperbolic discounting, we have

— 2 — .- T 55
n=1+p86+p36 +..._1+ﬂ6§:05 _1+—1_6
= 2 _gsSg o B
72_ﬂ6+ﬂ6-+”._ﬂéz%6__1_5

3 = 6% + 6% + ... = Bo? Eooiar: B6?

3 = 1—(5

Now plugging these into the definition of regular, we have

552 g8
5 153
2 =14+ 2
36
<7
0<1"5+5s
B
< 7
L<1%5+5
1-5<p(1-3)
1< 8 (1)

Hence, the quasi-hyperbolic discount function is only regular if § > 1, which
corresponds to the special case of exponential discounting; a quasi-hyperbolic
discounter with 8 < 1 does not have a regular discount function. ©
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A.2 Existence of a Dynamic Allocation Index

This section proves Proposition 2. This is needed to show that there is a value
of A for which V¥(F, \; A) = VA(F, \; A) for the hyperbolic discounter. There
are several steps to this proof. First, I explain a result from Berry and Fristedt
that V(F, A; A) is continuous and nondecreasing in A. Then I prove an original
result that V¥ (F,\; A) — VA(F,\; A) is nonincreasing in A. This does most
of the work in proving the proposition. I then show that if a3 > as then
VE(F,\; A) — VM(F, \; A) is strictly decreasing in A. Using this I show that
there exists a value of A for which VF(F,\; A) = VX(F, \; A) for any a1 > as.
The proposition is a direct consequence of this result.
The first step is to show that V(F, A\; A) is monotonic in A.

Theorem 3 (Berry and Fristedt, 1985) For all F' and A, V(F, \; A) is contin-
wous and a nondecreasing function of \.

Berry and Fristedt provide an adequate proof of this theorem, so I shall only
offer some intuition for its truth. An increase in A can affect the value function
in two ways: it increases the value of arm \ whenever it is chosen, and it expands
the set of F' over which the optimal strategy prescribes the A arm to include
those of higher expected value. Given this, an increase in A could not result in a
reduction of the value function because an increase in the value function never
makes it more likely F' will be chosen, and it strictly increases the value of any
choice of the A\ arm.

In order to show a dynamic allocation index exists, I also need a result
about how the size of the error made by choosing the the wrong arm varies with
A. Define the function A(F,\; A) as the difference in the value functions from
choosing the F' arm first and then continuing optimally and choosing the A arm
first and then continuing optimally;

A(F X\ A) = VE(E N A) — VAF, X A). (12)

The absolute value of the this quantity can be thought of as the cost of making
an error by selecting the wrong arm initially. This quantity turns out to be very
important, as the following lemma does most of the work in proving Proposition
2.

Lemma 1 A(F,\; A) is nonincreasing in A when A is nonincreasing with A #

0.

Proof: This proof is based on Berry and Fristedt’s proof for Bernoulli F'.

Fix A* > A.

This proof proceeds in three parts. Part (i) derives an expression for A(F, \*; A)—
A(F, \; A). Part (ii) performs a finite induction on the horizon to establish that
A(F,X\*; A) — A(F, A; A) is nonpositive. Part (iii) extends the result of Part (ii)
to infinite horizons.

(i) The value of choosing the F' arm first and then proceeding optimally is given
by
VE(F,\; A) = a1 E[X|F) + E[V((X)F, X\; AM)]. (13)
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Similarly, the value of selecting the A and then continuing optimally is given by
VAE, N A) = agd + V(F, A AD). (14)

Now define two more functions, which will prove to be of considerable
algebraic convenience. AV(F,\; A) = max[0,A(F,\; A)] and A= (F,\;4) =
max[0, —A(F, X; A)] so that

VE(F,NA) = V(F,NA) — A (F, X A) (15)
VME,NA) =V (F XA — AT (F ) A). (16)

Mnemonically, A~ is nonzero when A(F,\; A) is negative, or when X is the
optimal arm.

Using these definitions, substitute for V ((X)F, \; A) and V(F, A; A) in Equa-
tions 13 and 14 above. This gives

VE(F X A) = 0, E[X|F) + E[VMN(X)F, A AD) £ AT(X)F, 0 AN (17)
VME N A) = A+ VEFEXNAD) + A=(F, 2 AD). (18)

These expressions can then be used to compute A(F, \; A). The first two terms
in Equation 17 represent the value of selecting arm F' in the first period, arm
A in the second and then continuing optimally. Similarly, the first two terms
in Equation 18 represent the value of selecting arm A in the first period, arm
F in the second and then continuing optimally. Given this interpretation, sub-
tracting the first two terms in Equation 18 from those in Equation 17 gives
(a1 — a)[E[X|F] — A]. This gives

A(F, X A) = (g — ao)[E[X|F] = N + E[AT((X)F, X AM)] — A= (F, \; AW),

(19)
Using this expression to compute A(F, A*; A) — A(F, A; A) gives
A(F, N5 A) —A(F, N A) = (a1 —a2)[A = A ]+
E[AT((X)F, A" AW) = AY((X)F, X AD)) +
A= (F, 0 ADY — A=(F, 055 AW), (20)

(if) Proving the lemma requires that the difference in Equation 20 be nonpos-
itive. This section performs induction on a finite horizon to demonstrate that
this is true.

Let A, be a nonincreasing discount sequence with finite horizon n, so ele-
ments after the nt" are zero.

First, suppose n = 1. Then, for all A;, A(F,\*; A;) — A(F, \; Ay) is non-
positive implies

E[X|F] - \* < E[X|F] - A
2> (21)

which is true by assumption.
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Now suppose that the horizon n > 1 and A(F,\*; A,) < A(F, X\ 4,) for
any nonincreasing A,,. Now I will use this induction hypothesis to show that
AF, X5 An1) < AF X Ans).

Equation 20 can be rewritten with the truncated discount sequence

A(F, N5 Ang1) = A(F, X Ang1) = (a1 — o)A = X*] +
EAT(X)FN5 AN — AT (X F, N AN D] +

- 1 - 1
AT(FA AR = AT(F N AR (22)
The first term on the righthand side of Equation 22 is nonpositive because
A* > X by assumption and a; > as by hypothesis.
The remaining two terms are nonpositive for similar reasons. Consider the

- 1 . . . -
second term. Since A£L—|)-1 is nonincreasing and has horizon n, we have

E[AY((X)F, A5 ANL) — A () F, 3 AN )]

= E[max[0, A((X)F,\*; A,)] — max[0, A((X)F, X; 4,,)]]. (23)

The induction hypothesis gives that A(F,\*; A,) < A(F,\; A,) for all F| in

particular (X)F. Therefore, the second term in Equation 23 is always weakly

larger than the first, implying that the second term in Equation 22 is nonposi-
tive.

Consider the third term. Since A(nlJ)rl is nonincreasing and has horizon n, we
have

AT(F X ALL) = AT (F A5 AR
= max[0, —A(F, \; A,)] — max[0, —A(F, A\*; 4,,)]. (24)

The induction hypothesis gives that A(F, \*; A,) < A(F, \; A,). Therefore, the
second term in Equation 24 is always weakly larger than the first, implying that
the third term in Equation 22 is nonpositive.

Since each of the three terms in Equation 22 is nonpositive, we conclude
that the difference Equation 20 is nonpositive for every finite horizon. Now we
let the horizon go to infinity to show it is nonpositive for infinite horizons.

(iii) Suppose n = co. Let Ar denote the truncation of A, at finite T, so Ar
coincides with A, up to time T and has zeros afterwards. Letting T' — oo in
the result from Part (ii) gives

A(F, A5 Ase) < A(F, \; Aso). (25)

Since A = Ay, we have A(F, \*; A) < A(F,\; A) for all horizons. This is
sufficient to prove the lemma. ©
Proving Proposition 2 requires a stronger version of Lemma 1.

Lemma 2 If A is nonincreasing with an > o, then A(F,\; A) is strictly de-
creasing in .

36



Proof: Parts (ii) and (iii) of the proof of Lemma 1 showed that each part of
Equation 20 is nonpositive. If a; > ag, then the first term on the righthand side
of Equation 20 is strictly negative because A* > A\ by assumption. Therefore,
Equation 20 is strictly negative and A(F, A; A) is strictly decreasing in A. ©

Given this result, the existence of a dynamic allocation index is easy to
prove. Proposition 2 follows immediately from the following theorem.

Theorem 2 For each nonincreasing discount sequence A with A # 0 and
o1 > ag and each distribution F' on D, there exists a unique function A(F, A)
such that the F arm is optimal initially in the (F,\; A) bandit if and only if
A< A(F,A) and the A arm is optimal initially if and only if A > A(F, A).

Proof: This proof begins by defining A(F,A) = inf{\ € D : the A arm is
optimal for the (F, A; A) bandit }. Then I show that this definition implies that
F is uniquely optimal if A\ < A(F, A). Then I use Lemma 2 to show that A is
uniquely optimal if A > A(F, A). Indifference at A = A(F, A) then follows from
the continuity of V.

For A < A(F, A), we have

VE(F, X A) > VAF, X A) (26)

from the definition of A(F, A). Because A(F, A) is the infimum value of A for
which A is optimal, it must be that F' is uniquely optimal.

The case where A > A(F, A) is a little harder because there may be values of
A above A(F, A) where F' is optimal. However, the fact that A(F, \; A) is strictly
decreasing in A, as shown in Lemma 2, proves that this cannot be. Therefore

VE(F, X\ A) < VAF, X A) (27)

for all A > A(F, A)and X is uniquely optimal.

Finally, if A = A(F, A), we have that neither F' nor A is uniquely optimal.
Extending the continuity of V(F, \; A) to VA(F, \; A) and V¥ (F, \; A), the pre-
vious cases sandwich possible values of V*(F,\; A) and V¥ (F, \; A) to give

VI(F,A(F, A); A) = VA(F,A(F, A); A), (28)

which is equivalent to both arms being optimal initially for the (F, A(F, A); A)
bandit.Q

Proposition 2 For a hyperbolic discounter with 8 < 1 and for A with A #0
and each distribution F' on D, there exists a unique function A(F, A) such that
the F' arm is optimal initially in the (F,\; A) bandit if and only if A < A(F, A)
and the A arm is optimal initially if and only if A > A(F, A).

Proof: If § < 1, we have § > (9 for every d. Therefore a; > aw, so all the
conditions of Theorem 2 are met.
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If 5 = 1, Berry and Fristedt’s Theorem 5.5.3 applies directly, providing
an exact analog of Theorem 2 for regular discount sequences. Since then the
discount sequence A is regular in this case, the conditions of their theorem are
satisfied.Q

The existence of a dynamic allocation index should not be confused with
the existence of an index result like that of Gittins and Jones (1976) which
demonstrates that the optimal strategy is to select the arm with the highest
index value. Indeed, it has been shown that this is not in general true for non-
exponential regular discount sequences. I am not aware of any results, either
positive or negative, for non-regular discount sequences.

A.3 Incentive Compatible Dynamic Allocation Index Elic-
itation

Proposition 3 Suppose A(F, A), the dynamic allocation index for the arm F
given A, exists and is unique. Then £ = A(F, A) is the unique optimal value of
£ for a subject to report in the mechanism in Section 5.1.

Proof: This proof proceeds by showing that the mechanism of Section 5.1 in-
duces an (F, \; A) bandit. Then I show that reporting an £ # A(F, A) lowers
expected payoffs.

First, note that the mechanism of Section 5.1 provides for A to remain the
same for the rest of the horizon once it has been chosen. Therefore, an agent
must maximize the payoffs from choices of either F' or A in each future period.
Given that F' and A have the information structures of arms, and the agent has
a discount sequence A, these elements form an (F, A\; A) bandit. Therefore, we
can use bandit theory, including that in Section 4, to assess the mechanism.

By definition of A(F, A), we have VF(F,\; A) = VMF,\;A) when A =
A(F, A).

Suppose the subject picks £ = A(F, A) + € for some € > 0. Then suppose
the random realization of A € (A(F, A), A(F, A) + €) with positive probability,
and suppose A = A(F, A) + ¢/2 for specificity. Then, because £ > A, the subject
must select arm F' in period t. However, because A > A(F, A), X is the unique
optimal arm to play. This means A(F, \; A) is negative, so £ = A(F, A) + € is
not optimal. Uniqueness of A(F, A) implies A(F, \; A) is strictly decreasing in
A, so F' is not optimal for any positive €. Therefore, any value of £ > A(F, A) is
not optimal.

The argument for £ < A(F, A) follows immediately, so the unique optimal
value of £ is A(F, A). Therefore, the mechanism induces subjects to truthfully
reveal their dynamic allocation index.Q

B Instructions

You are about to participate in an experiment designed to provide insight into
decision processes. The amount of money you make will depend partly on
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decisions you make and partly on chance. If you follow the instructions carefully
and make good decisions, you might earn a considerable amount of money. You
will be paid in cash.

B.1 How You Make Money

You make money by choosing an urn from which to receive a payoff. There are
one billion hidden urns and one billion visible urns. Each urn has a number on
its side. Each urn contains an identical set of one billion balls. Each of these
balls has a number on it.

When you choose an urn, one ball will be randomly drawn from it. You will
be told the total of the number on the ball and the number on the urn, but not
the separate numbers. This total is your payoff, in francs.

B.2 Order of the Experiment

This experiment will proceed as a number of rounds. Each round will have
exactly ten periods. At the beginning of each round, the computer will randomly
select one hidden urn from which you can receive payoffs. You will not know the
number on the hidden urn, but can learn about it by choosing the hidden urn.
During a randomly determined period, one of the visible urns will be selected
from which you can also receive payoffs. Unlike the hidden urn, you can see the
number on the visible urn.

Even before a particular visible urn is selected, you must consider which
of the values that could be on the visible urn would lead you to choose it.
Each period, you will be asked for a cutoff value of the number on the visible
urn, above which you would choose the visible urn and below which you would
choose the hidden urn. This cutoff will be used to determine your choice in the
randomly determined period in which one of the visible urns is selected: if the
number on the selected visible urn is higher than your cutoff, the visible urn
will automatically be chosen for you; if not, the hidden urn will automatically
be chosen for you.

In each period, you must trade off choosing the visible urn, whose number
you know, with learning more about the number on the hidden urn.

B.3 Urns

Other than being hidden, the set of one billion hidden urns is identical to the set
of one billion visible urns. The Urn Number Table you have been given shows
the number of urns with each possible number on it. The righthand column
shows the percentage of each of the one billion urns with each possible number
on it. For example, 10,203,858 urns, or 1.023on them.

Numbers are distributed among urns according to a bell curve, or in statis-
tics, a normal distribution. The average of all the numbers is 1. The standard
deviation is 10, meaning about 66(1+10) and -9 (1-10), and about 95
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B.4 Balls

Each urn contains an identical set of one billion balls. The Ball Number Table
you have been given shows the number of balls with each possible number on
it. The righthand column shows the percentage of each of the one billion balls
with each possible number on it. For example, 53,200,074 balls, or 5.32urn, have
numbers between 4 and 5 on them.

Numbers are distributed among balls according to a bell curve, or in statis-
tics, a normal distribution. The average of all the numbers is 0. The standard
deviation is 5, meaning about 66(0+5) and -5 (0-5), and about 95

Note that the balls in each urn have several important properties:

1. Because the average number on the balls is 0, the average payoff you get
from an urn is the number on the urn.

2. The distribution of balls is symmetric, which means the chance of getting
one which increases your payoff by a certain amount is the same as getting
one which lowers it a certain amount. For instance, the chance of an
increase of 5 francs is the same as the chance of a decrease of 5 francs.

3. The chance of getting any particular ball is the same every period.

4. The chance of getting any particular ball is the same for each urn.

B.5 Visible Urn Cutoff

At the beginning of each period until one of the visible urns is selected, the
computer will ask you ”Would you choose the visible urn in this period if the
number on it were [Number]?” If you would, click the ”Yes” button, if not, click
the ”No” button. You will be asked a series of these questions, with a different
[Number] each time, until the cutoff point at which you would just prefer the
visible urn has been narrowed down to the nearest 0.05.

You should answer these questions carefully because, in the period in which
a visible urn is selected, your urn choice will be made for you based on your
answers. The computer assumes you will choose the visible urn for all numbers
larger than the cutoff, and the hidden urn otherwise. Therefore, it will auto-
matically choose the visible urn if the number on it is larger than the cutoff,
and the hidden urn if the number on the visible urn is smaller than the cutoff.

B.6 Using the Computer

There are four panels on the computer screen. You may click in these panels
with your mouse, but please do not attempt to use any other applications, look
at the source code for this experiment or visit any other web sites during the
experiment.
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B.6.1 The History Panel

The long vertical panel on the left will contain your playing history. Please look
at that panel now. For each period, it will show your choice of urn, your payoff
and the visible urn cutoff; recent periods will be added to the top of the list,
though earlier periods will still be accessible by scrolling down.

B.6.2 The Information Panel

Please look at the top of the three panels on the right side. It provides you
with information on the current period, your total payoff and the number on
the visible urn, if it has been selected. It also shows a best guess at the number
on the hidden urn. The computer uses a law of probability, Bayes’ Rule, to
integrate the information in the urn number table and the ball number table
with the payoffs you have received from the hidden urn to formulate a best guess
at the number on the hidden urn. This number will change as you select the
hidden urn and get more information about it.

B.6.3 The Urn Choice Panel

Please look at the middle of the three righthand panels (which now has a “Begin”
button). This is where you indicate your choice of urn each period. To indicate
your choice of an urn, click once with the mouse in the circle in front of the
name of the urn you wish to choose; a black dot will appear within the white
circle. Then click the Submit button at the bottom of the panel one time with
the mouse. Clicking the Submit button causes the computer to select a ball and
calculate your payoff for the period.

B.6.4 The Instructions Panel

The bottom of the three right panels will contain these instructions. You may
scroll through them and examine them at any point during the experiment.

B.7 Summary
1. The experimenter will announce the beginning of the period.
2. If one of the visible urns has not yet been selected:

(a) You will be asked a series of questions to determine the visible urn
cutoff, the smallest number on the visible urn for which you would
choose it that period.

(b) There is a 3/10 chance the visible urn will be selected that period. If
it is, the computer will automatically choose the visible urn for you
if the actual number on the selected visible urn is larger than the
cutoff, and the hidden urn if the actual number on the visible urn is
smaller than the cutoff.

If no visible urn is selected, you must choose the hidden urn.
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If a visible urn has been selected, you can choose either the visible urn or
the hidden urn.

3. A ball will be drawn from your chosen urn.

4. The number on the ball will be added to the number on the urn you chose
to determine your payoff.

5. The computer will notify you of your payoff and update your history.
6. Record your choice and payoff on your Record of Earnings Sheet.

7. Wait for the experimenter to announce the beginning of the next period.

Francs will be worth $0.08 (8 cents) each. Feel free to earn as much money
as you can. Are there questions?

B.8 Strategy

You want to allocate your ten selections among the two urns to maximize your
total payoff. Since each urn has the same set of balls in it, if you knew the
number on both urns, you would select the one with the higher number in each
period.

Since you do not know the number on the hidden urn, it is helpful to learn
about it from experience. If you choose the hidden urn several times, you get
a pretty good estimate of its number. Choosing the visible urn, on the other
hand, only gets you a payoff. You do not learn anything about the number on
the hidden urn.

Given this, you should never select the visible urn if you think its number
is lower than that of the hidden urn. However, you may want to choose the
hidden urn even if the visible urn’s number is higher than your best guess at
the number on the hidden urn, especially if your beliefs about the hidden urn
are based on only a couple of tries. Your belief that the hidden urn does not
pay well may be the result of a couple bad balls, and more attempts may reveal
it in fact pays better on average.

If you select the hidden urn a couple more times and it does not pay well,
then you can switch to the visible urn. But if it turns out to pay well, then you
will have found a way to get high payoffs which you would not have known about
had you not chosen the hidden urn those few periods. Of course, it is possible
that the visible urn will be enough better that the potential cost of trying the
hidden urn is unlikely to be repaid with higher payoffs in the future. Exactly how
good the visible urn has to be is your cutoff value, with the difference between
the cutoff and your best guess representing the value of the information you get
from choosing the hidden urn. How much you value the information depends
on your beliefs about the number on the hidden urn, how much your beliefs
are likely to change with one more attempt and the number of periods left to
exploit what you have learned.
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Thus, each period, you must trade off maximizing that period’s payoff (by
choosing the urn you currently believe to have the higher number) with refin-
ing your beliefs about the number on the hidden urn, impacting your future
decisions and payoffs.

43



