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Abstract Field-based primate studies often make population inferences using count-
based indices (e.g., individuals/plot) or distance sampling; the first does not account
for the probability of detection and thus can be biased, while the second requires large
sample sizes to obtain precise estimates, which is difficult for many primate studies.
We discuss photographic sampling and occupancy modeling to correct for imperfect
detection when estimating system states and dynamics at the landscape level, specif-
ically in relation to primate ecology. We highlight the flexibility of the occupancy
framework and its many applications to studying low-density primate populations
or species that are difficult to detect. We discuss relevant sampling and estimation
procedures with special attention to data collection via photographic sampling. To
provide tangible meaning to terminology and clarify subtleties, we use illustrative
examples. Photographic sampling can have many advantages over observer-based
sampling, especially when studying rare or elusive species. Combining photographic
sampling with an occupancy framework allows inference to larger scales than is
common in primate studies, addresses uncertainty due to the observation process,
and allows researchers to examine questions of how landscape-level anthropogenic
changes affect primate distributions.
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Introduction

Population studies of wild primates are logistically challenging and often costly. Esti-
mating population size of primates can be difficult, as species often live in remote
areas, where complex vegetation structure causes poor visibility and species are
cryptic, highly mobile, and clustered into groups. Given the high costs and logisti-
cal limitations of rigorous primate density or abundance estimation, landscape-level
inference is a challenge. As a result, primate studies often use count-based indices as
a relative measure of abundance, and then apply these values to make inference to the
landscape level (e.g., individuals/plot, individuals/transect; Ross and Reeve 2003).
An inherent assumption of most abundance indices is that they are proportional to the
true abundance (increasing or decreasing together), and that the proportion does not
change across space, time, and sample units (Anderson 2001; Nichols 1992). Thus,
indices do not account for varying detection probabilities due to a wide range of con-
ditions. Though indices may be appealing because they are often less expensive and
easier to implement than population state variables that account for detection, they
can be significantly biased, leading to erroneous conclusions about a population’s
status (Nichols 1992). Depending on the direction (+ or –) and magnitude of bias,
conclusions can lead to a species not receiving conservation action when needed, or
misappropriated when unneeded actions are directed to a stable population of a dif-
ficult to detect species (Guschanski et al. 2009; MacKenzie et al. 2006; Zhan et al.
2006).

Line transect methods are also used to estimate absolute primate density
(Buckland et al. 2010a). Many of these commonly used techniques, however, do
not follow important survey design principles, and/or the analyses suffer from a
lack of statistical rigor (see Buckland et al. 2010a, b). Even when idealized survey
procedures are possible and a rigorous distance sampling approach is used, density
estimation of rare or difficult to detect species (such as some primates) leads to con-
siderable parameter uncertainty (poor precision). Common reasons for this include
small sample bias in the detection function (Buckland et al. 2001) and uncertainty in
group size (Buckland et al. 2010a). This lack of precision reduces the power to detect
changes in population size (Plumptre 2000), limiting the use of distance sampling
methods in studies of many primate populations. Additional challenges of primate
detections via line transects occur when populations are heavily hunted, the species is
nocturnal, or when a population occurs across difficult terrain, such as mountainous
areas (Fashing and Cords 2000).

Without rigorous landscape scale studies, important spatial trends and effects
on populations that are occurring at the landscape level may be overlooked.
Because primate habitat is being lost globally (Chapman and Peres 2001),
with remnant populations being isolated in fragmented and low quality habitat
(Cowlishaw and Dunbar 2000), empirical studies are needed at larger spatial scales
(Harcourt and Doherty 2005) than are often achievable with primate populations
using traditional techniques. Instead of focusing on absolute abundance or den-
sity, we consider another fundamental component of animal ecology, the pattern of
species distribution (Andrewartha and Birch 1954), as a primary state variable of
interest.
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In this paper, we discuss 1) the advantages of using cameras to sample primate
species, 2) the use of occupancy models to make inference about species distri-
bution patterns, 3) relevant study design principles, 4) the relationship between
occupancy and abundance, 5) occupancy model extensions, and 6) modeling imple-
mentation. The approach outlined here allows researchers to noninvasively collect
data on rare and difficult to detect primate species, explicitly deal with imperfect
detection when sampling primates, incorporate spatial variability that is applicable
for landscape scale inference, and enable researchers to ask a diversity of important
ecological and conservation driven questions. Occupancy and photographic sampling
have been widely adopted in ecological studies (MacKenzie et al. 2006; O’Connell
et al. 2010), in combination or separately. Numerous primate studies have used pho-
tographic sampling (Bezerra et al., this issue, Boyer and Pruetz, this issue), but few
have embraced the occupancy framework. We are aware of only three field-based
(i.e., direct sampling) primate studies that use the occupancy framework (Baker et al.
2011; Guillera-Arroita et al. 2010; Keane et al. 2012) and one non-field-based (i.e.,
indirect sampling) study (Karanth et al. 2010).

Advantages of Cameras When Sampling Primates

Photographic sampling is expanding into many ecological studies and monitoring
programs (Kucera et al. 2010; Martins et al. 2007). Camera traps are being used
to investigate species abundance, density, distribution, richness, predator–prey inter-
actions, habitat selection, and animal behavior (O’Connell et al. 2010; this special
issue).

There are many advantages to using cameras for sampling wild animal popula-
tions (Kays and Slauson 2008; O’Connell et al. 2010). Perhaps their most appealing
quality is that the animal and the observer do not have to be at the same place at
the same time, which may be especially important for primate species that are rare
or difficult to detect via human observers (e.g., cryptic, nocturnal). Reliable cam-
eras can operate continuously for weeks to months in a variety of habitats, including
subtropical rainforests, and can be simultaneously deployed across large spatial
scales (Larney, E., pers. comm.). The analogous simultaneous sampling via observers
may be costly and is often logistically unfeasible, especially in remote areas where
travel is difficult. In addition, photographic sampling reduces, or eliminates, interac-
tions between observers and primates, possibly reducing stress or behavioral changes,
such as avoidance of people by hunted populations.

Cameras may be optimally placed within selected sample units to maximize
detection probability in occupied areas. This flexibility allows investigators to target
species that are terrestrial, arboreal, or both. Moreover, the photographs themselves
provide physical evidence of the presence of a species at an exact spatial location, and
are important in documenting and understanding long-term change in species distri-
butions. These are many of the reasons why photographic sampling is so prevalent
in carnivore studies (Gerber et al. 2010; Kays and Slauson 2008). Still, there are a
number of considerations that investigators must address before employing cameras
as the main sampling method in their study. For instance, the type of environment
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(e.g., tropical forest, high mountain top), quality of battery, and storage card are
very important in a camera’s ability to operate continuously at a variety of locations.
Deciding where to place cameras, both in terms of defining and selecting sample
units/sites and selecting camera locations within these units/sites, will influence the
inference that is being sought (see Study Design Principles section).

We focus on the static or single-season occupancy model (sensu MacKenzie et al.
2002) to estimate distributional patterns and investigate species–habitat relationships.
We briefly discuss two additional occupancy models that could be useful in studying
primates. There are, however, many other applications of occupancy models, such
as species interactions (Bailey et al. 2009), meta-population dynamics (MacKenzie
et al. 2003), disease mapping (Abad-Franch et al. 2010), invasive species mapping
(Gormley et al. 2011), and large-scale community monitoring (Ahumada et al. 2011).

A Static Occupancy Model to Make Inference About Species Distribution

In this section, we outline the essential elements of the static occupancy model
when used with photographic sampling data. We 1) discuss the idea of occupancy
and detection probability, 2) define the statistical model, 3) consider information-
theoretics and multiple models, 4) demonstrate how camera malfunctions can be
accommodated, 5) define occupancy model assumptions, and 6) address the issue of
false positives.

Occupancy and the Need for Detection Probability

Occupancy is defined as the probability that a site or patch is occupied by a tar-
get species during a specified time period, often referred to as a season (MacKenzie
et al. 2006). Generally, a site or sampling unit is defined as any patch of habitat that
is either naturally occurring (e.g., ponds or habitat fragments) or arbitrarily defined
by the investigator (e.g., sampling block or a camera site). Robust inference about
species occurrence requires the consideration of two main sources of variation, spa-
tial variation in occurrence and spatial-temporal variation in detection (Thompson
2004).

Historically, species occurrence was referred to as presence/absence, where spatial
variation was often considered, but not detection variation (Vojta 2005). There was no
formal way of separating a site that had no individuals of a species (true absence) and
a site that contained individuals but the observer did not detect them (non-detection).
When a site is truly occupied and there are no detections, this is referred to as a false-
absence or false-zero. An occupancy analysis addresses the variation in detection by
using a probability model. This model is used to estimate the probability that a site
is occupied from a series of detections/non-detections, the characteristics of the site,
and the detection histories of the species at all other sites. Without considering how
detection varies, estimates of occurrence can be drastically biased (MacKenzie et al.
2006).

Consider the scenario in which species occurrence at (or use of) a camera site
depends on some habitat feature, such as the size of the habitat fragment within which
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Fig. 1 Demonstration of the bias in the probability of species occupancy when detection is assumed to
be perfect p(1) or constant p(.), when occupancy is positively related to a habitat feature: Neg = negative
relationship between detection and habitat covariate. Pos = positive relationship between detection and
habitat covariate.

the site is located. Suppose this same habitat feature also affects the probability of
detecting the species at occupied sites, making it harder or easier to detect the species.
If we falsely assume detection is perfect or constant across all sites and surveys, our
inference about the relationship between species occupancy and the habitat feature
can vary dramatically; all estimates will be biased (Fig. 1). For example, assume
true occupancy is positively related to canopy cover, whereas detection is negatively
related; more sites with high canopy cover will be occupied, but we will be less
likely to detect the species at these sites compared to occupied sites with less canopy
cover. Without considering this variability and assuming detection is perfect, occu-
pancy will be negatively biased with the greatest bias at high canopy cover values. In
other words, where we are most likely to not detect the species is where there is the
greatest discrepancy between true and naı̈ve occupancy. Alternatively, if detection is
positively related to canopy cover (higher canopy cover → higher detection probabil-
ity) and we assume detection is constant, naı̈ve occupancy will be negatively biased
at low canopy cover and positively biased at high canopy cover and the relationship
between species occurrence and canopy cover is masked (Fig. 1).

Occupancy is naturally viewed hierarchically, where there is an observation pro-
cess that may imperfectly represent the ecological reality (Fig. 2). To separate
non-detections and true absences, the occupancy framework uses repeat evaluations
of a species as either detected (1) or not detected (0) at each site. When using
cameras, these evaluations are repeat surveys over time, defined by discrete sam-
pling occasions. To illustrate, consider a population of 18 sites where 8 sites are
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Fig. 2 Hierarchical observation
and ecological process, where
occupancy of a grid cell can be
observed imperfectly. The
population of interest is 18 sites,
of which 8 were randomly
selected and sampled on 3
occasions (cameras placed for
3 wk). On each occasion, the
species was either detected or
not detected (1 or 0,
respectively). The bottom grid
cells that are filled in indicate the
site is occupied by the species.

randomly selected for sampling brown mouse lemur (Microcebus rufus; Fig. 2).
We place cameras within each of these sites and sample for 3 wk. We then record
detection/non-detection information, where one occasion equals 1 wk. As such, for
each sampling occasion and camera site, we would mark a 1 if there was one or
more mouse lemur photograph and a zero if there were no mouse lemur photographs.
We end up with a matrix (referred to as a detection history) that is 8 (sites) × 3
(occasions). Because we are concerned only with species occurrence, the number of
photographs above one within an occasion is irrelevant; there is no difference in one
photograph of a single mouse lemur and many photographs of one or more mouse
lemurs. Photographic sampling studies often define occasions as days or weeks;
we discuss this further in the Study Design Principles section. In this example, we
are using such few sites for simplicity only; the number of sites in a real camera-
occupancy study should likely be many more (see Study Design Principles section).

Defining the Model

To make formal inference about our unknown quantities of interest, mouse lemur
occupancy and detection probability, we use a probability model. Following conven-
tional notation, we define ψi as the probability of mouse lemur occupancy at site
i and pik as the probability of detection at site i on occasion k, given the site is occu-
pied. Using a detection history (hi) in which mouse lemurs were not photographed
during the first and second occasions, but are successfully photographed during
the third occasion (see the lower left site in Fig. 2), hi = 001, and the probability
statement is written as:

Pr(hi = 001) = ψi(1 − pi1)(1 − pi2)(pi3) (1)

We know that this site is occupied by mouse lemurs based on the detection on occa-
sion 3; the probability of this event is ψi . Notice that all possible events are included
in this statement; we read the probability statement as a joint product of occupancy
(ψi) AND no detection on occasion 1 (1 − pi1) AND 2 (1 − pi2), AND detection
on occasion three (pi3). Now, let’s consider two sites where the mouse lemur was
not detected, but truly occupied one of these sites (see lower right site and the upper
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left site of Fig. 2). The probability statement associated with the detection history
observed at both sites is:

Pr(hi = 000) = ψi(1 − pi1)(1 − pi2)(1 − pi3)+ (1 − ψi) (2)

At these camera sites, our data cannot directly indicate whether both, one, or neither
of these sites is truly occupied. The first possibility is stated by the terms left of the
addition sign, where mouse lemurs may have been present (ψi), but not detected over
the three sampling occasions [(1−pi1)(1−pi2)(1−pi3)]. The right of the addition
sign is the other possibility that mouse lemurs simply did not occupy the site (1−ψi);
there is no need for detection parameters, as the species was not present and available
to be detected. The probability statement is inclusive of all possible outcomes, where
the uncertainty in occupancy is mathematically represented (i.e., OR) as a sum of two
possibilities.

Assigning probability statements to each site’s detection history permits the esti-
mation of our unknown parameters of interest (ψi and pik) through maximum
likelihood methods. Maximum likelihood is often done by numerical optimization
routines that maximize the joint density (i.e., likelihood) of all our unknown param-
eters, given our data. Maximum likelihood estimation is a common method for
statistical inference owing to desirable statistical properties under asymptotic con-
ditions; we encourage interested readers to read more on likelihood theory and
its applications (Hilborn and Mangel 1997). We can define the likelihood of our
unknown parameters, given our data (detection histories), as

Likelihood(ψi, pik|h1, h2, h3, . . . , hN) =
N∏

i=1

Pr(hi) (3)

However, while defined generally, this model is over-parameterized with as many
unknown parameters as there is sample size; the model has zero degrees of freedom
and cannot estimate all parameters separately. To estimate the parameters, it is neces-
sary to reduce the dimension of this model. To do this, an investigator considers the
response variables to have a functional relationship with a limited number of charac-
teristics at each site or sampling occasion. The characteristics of the site or sampling
occasion are used as covariate information. This covariate information (xij or xijk
for i = 1, . . . , N sites, and j = 1, . . . ,M covariates in the model, and k = 1, . . . , T
surveys at each site) can be introduced using a logistic regression model, where
each αj and βij are the j = 0, . . . ,M + 1 unknown “effects” on occupancy or
detection probability, respectively, for each independent covariate. The model can be
expressed as:

logit(ψi) = α0 + α1xi1 + α2xi2 + . . .

logit(pik) = β0 + β1xik1 + β2xik2 + . . . (4)

The logit (loge(θ/1 − θ)) is used as a link function that takes a probability from a
scale of [0,1] and projects it on a line taking values from −∞ to∞. Final estimates
are back-transformed using the inverse-logit (exp(θ)/1+exp(θ)), so that occupancy
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and detection probabilities are properly supported between 0 and 1. By incorporating
auxiliary information into the modeling process, we can rigorously formulate bio-
logically driven hypotheses in a statistical framework. Consider the hypothesis that
brown mouse lemur occupancy varies owing to differences among sites in unlogged
and logged forest, as well as to variation in fruit abundance at each site (ESM1). As
such, xi1 is a binary covariate to indicate site i is either an unlogged or logged for-
est site and xi2 is a continuous covariate, representing the abundance of fruit for site
i; α0 is the intercept, α1 is the effect difference between unlogged and logged for-
est, and α2 is the effect of variability in fruit abundance. This model considers fruit
abundance to vary additively (on the logit scale) between unlogged and logged sites.
To consider fruit abundance to vary completely differently between our forest sites,
we need to include an interaction covariate, x3, that is the product of the two other
covariates (xi3 = xi1 ∗ xi2).

We can also define the occupancy model with a hierarchical model formulation,
where an observational model is conditional on a true spatial process model (ESM2).
Such a model can be naturally fit using a Bayesian framework, where inference is
achieved by sampling full conditional posterior distributions of unknown parameters
using Markov chain Monte Carlo methods (Royle and Dorazio 2008). This approach
has advantages when there is prior information to incorporate, it is preferred to
treat parameters as random (i.e., random effect), and there are multiple hierarchal
structures considered, such as multispecies modeling (Burton et al. 2012).

Information Theoretics and Multiple Models

Within a likelihood framework, multiple models are usually fit to the data to evalu-
ate competing hypotheses involving covariates (independent explanatory variables)
thought to influence species occurrence or detection probability. Evaluating the rel-
ative influence of these predetermined variables on occupancy probabilities is often
the main objective of a given study. Following from the mouse lemur example above,
it could be important to differentiate the relative influence forest type (logged vs.
unlogged) and fruit abundance have on their occurrence. This could aid in forest
logging practices; if fruit abundance has more influence on mouse lemur occupancy
than general forest type, it may be possible to achieve high mouse lemur occu-
pancy in a logged forest by maintaining a certain fruit abundance, possibly through a
shelterwood cutting plan.

Information-theoretic approaches are used to determine the relative weight of evi-
dence for each plausible model, or hypothesis (Burnham and Anderson 2002). From
these weights, the relative importance of each independent variable can be calculated
by summing the weights of models that contain each variable (cumulative model
weights); however, care should be taken to ensure that each variable being com-
pared occurs in the same number of models (i.e., a balanced model set; Burnham and
Anderson 2002; Doherty et al. 2012; Lukacs et al. 2010). Importantly, model selec-
tion uncertainty can be incorporated and accommodated via model averaging, where
parameter estimates from each model are weighted based on the model’s relative sup-
port to yield estimates that are less biased compared to any single model’s estimates
(Burnham and Anderson 2002; Doherty et al. 2012).
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Camera Malfunctions and Missed Survey Occasions

Despite best efforts, it is common for sites to not be surveyed on some occasions.
A camera may malfunction, deplete its battery power, or fill its memory card or
film cartridge. Determining whether an occasion has not been surveyed will depend
on the ability of the researcher to determine when a camera malfunctioned. This
could be done by routine checking of the camera, or by programming the camera to
actively take one or more photographs during each occasion. Cameras that lacked
photographs at these preset times could be considered inoperable during the entire
occasion.

Ignoring these missing occasions in the probability model (i.e., treating them as
non-detections) will lower detection probability and induce heterogeneity among
sites and sampling occasions. Because each sampling occasion is treated as indepen-
dent, we can simply drop the missed occasion from a detection history’s probability
statement and thus no information enters into the model likelihood for that sampling
occasion. For example, if we set up a camera site 1 wk (one occasion) later than all
others, we would simply rewrite the probability statement of Eq. 1 as

Pr(hi = −01) = ψi(1 − pi2)(pi3) (5)

Though still statistically rigorous, this allows unequal sampling across sites, some-
thing that may be planned or accidental. If cameras are partially operational during a
long occasion, such as a week, it may be a poor choice to ignore any detection data.
Instead, we can use the detection/non-detection information for these occasions, but
also include a sampling-level covariate that corresponds to the amount of time (e.g.,
days, hours) that the camera site was actually operational.

Model Assumptions

The static or single-season occupancy model is based on four major assumptions: 1)
sites are closed to changes to occupancy status over the designated sampling period or
season (closure assumption), 2) the probability of occupancy is constant across sites
or otherwise appropriately modeled with covariates such that there is no unaccounted
for heterogeneity, 3) the probability of detection is constant across sites and sampling
occasions or otherwise modeled, and 4) detections and thus detection histories of
sites are independent.

When sampling primates with cameras, it is especially important to consider the
closure assumption because individuals are often highly mobile and may violate this
assumption. Simply, no primate will either truly occupy or not occupy a single camera
site for the duration of the study because the size of the site is much smaller than most
primates’ home range. Instead, a species will likely be near the camera some of the
time and not at other times. Obviously, when members of the species are not near the
camera, the species is not available for detection. This process does not necessarily
violate the closure assumption; if the species availability at a camera location is a
random process, such that during each occasion the species has a nonzero probability
of being near the camera, the closure assumption is not violated. However, occupancy
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will reflect the probability a site is used during the study period, rather than physical
presence the entire time (MacKenzie and Royle 2005; MacKenzie et al. 2006). Note
that if the site size is poorly defined, such as when an individual is attracted to a
site that it would not normally use owing to placement of bait or lure, the ability to
make inference to the species’ natural use of sites is jeopardized (Efford and Dawson
2012). For further discussion on the closure assumption, see “Defining the Season”
in the Study Design Principles section below.

To meet assumptions 2 and 3 above, one must thoroughly consider the ecology
of the primate species being studied. Expert knowledge and published literature is
helpful in deciding on relevant covariates to include in models. The best way to
meet assumption 4 is to follow study the deign principles outlined below and not
purposively place camera sites. For a more detailed account of the assumptions, see
Mackenzie et al. (2006).

False Positives

We have so far considered only when a primate species goes undetected at an occu-
pied site. Now we consider when a species is erroneously detected at a site when it
is truly absent (false-positive). This can occur when species are misidentified as a
result of blurry or poor quality photographs. If false-positives occur and cannot be
resolved following strict design protocols, modeling approaches are available that
combine data sources without false-positive errors to correct a more extensive dataset
where false-positives are likely (Miller et al. 2011; Royle and Link 2006). However,
if there are relatively few poor quality photographs in which the species is not known
exactly, it may be more appropriate to ignore these photographs and consider them
as non-detections. If these were true detections, ignoring photographs will lower
the detection probability and likely reduce the precision of the occupancy estimates,
while including them when the species was incorrectly identified will often introduce
bias (Miller et al. 2011; Royle and Link 2006). Ideally, all photographs with primate
detections will be identified to the species without error.

Study Design Principles

Study design is a critical aspect of most studies, including occupancy studies, but
is often overlooked. In this section, we 1) outline the general ideas of using a sam-
ple to make inferences about a larger population, 2) address how to randomize site
selection, and 3) discuss the importance of defining the season of an occupancy study.

Using a Sample to Make Inference to a Population

A statistical population is a set of elements that we want to make statements about.
Generally, the scope of an occupancy study involves a large spatial scale that spans
multiple home ranges of the primate of interest. At this spatial scale, to study all
of the elements in a population (i.e., a census of sites of interest) is physically
and fiscally prohibitive. For example, if there is interest in the use of naturally
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occurring salt/mineral deposits by a primate species, it is unlikely that all deposits
can be sampled. As an alternative we select a sample from the population, then use
the sample to make statements about the population (i.e., statistical inference). Using
a sample has several appealing characteristics. Mainly, it is faster, cheaper, easier,
and, when implemented correctly, is mathematically justifiable. Identifying what the
population of interest is depends on your ecological question, while selecting the
sample will ultimately dictate where cameras are placed. Once a sample of sites is
identified, it can be a challenge to secure a camera to achieve an ideal angle to sam-
ple the species’ use of a site (e.g., in a canopy pointing down, on a tree bole pointing
parallel to the ground); this will largely depend on the mode of locomotion of the
primate.

Making inference from a sample to a population requires that the sample repre-
sents the population of interest. If the sample is not representative of the population,
the conclusions about the sample are still valid, but when making inference to
the population the conclusions will be wrong. For example, if camera sites are
selected based on observed primate use of salt/mineral deposits, the sample may be
informative regarding those sites, but may be unrepresentative of the population of
salt/mineral deposits. The paradox in applied statistical inference is that because we
do not know the characteristics of the population, it is impossible to say whether
our sample is representative of it. The best we can do is take actions that maximize
the probability that our sample will be representative, which we can do by selecting
our sample randomly. A random or probabilistic sample is a fundamental concept
in design-based inference (Cochran 1977; Thompson 2012). Occupancy estimation,
in contrast to design-based inference, is inherently model based (see Gregoire 1998
for a comparison of design- and model-based inference). However, most of the con-
cepts that rely on randomization in design-based inference also apply to model-based
inference.

First, randomization reduces the chance that variables that are not explicitly mod-
eled or accounted for will have an effect on the results of the study. That is, it reduces
the chance that confounding variables will affect the results when compared to a
nonrandom study. Second, randomization increases the probability that the range of
values in the population will be represented in the sample; following from the min-
eral deposits example, the selection of camera sites based on past use is unlikely to
capture the full range of use, thus possibly missing the explanatory power of why that
may be. If the functional relationship between the response variables (occupancy and
detection probability) and predictor variables is unknown, then observing how the
response changes as a function of a range of predictor variables helps understand that
relationship. Third, a random selection helps prevent against intentional or uninten-
tional bias imposed by the investigator that might occur when selecting a nonrandom
sample. The investigator-imposed bias increases the probability that the sample is not
representative of the population.

Randomizing Site Selection for Occupancy Studies

Recall that in occupancy analysis, the spatial distribution of the species is the state
variable of interest. One method for random sampling for an occupancy study is
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to first define the population as some spatial boundary. Then divide the boundary
into smaller subunits (called sites) that are capable of being sampled with camera
traps. Finally, randomly select the sites to be sampled. The number of sites included
affects the range of values in the population that are represented in the sample, the
ability to identify the functional relationship between the response variable and the
predictor variables, and the ability to detect changes in species distributions if those
changes occur. Generally, more sites are better. We recommend researchers explore
study design scenarios using different numbers of sampling sites when consider-
ing statistical power and to discriminate among alternative hypotheses (i.e., models).
Briefly, to explore study design options, one would first consider realistic variation
in occupancy and detection for the study of interest (via expert opinion or published
literature), then simulate data sets with varying number of sites and occasions, and
lastly fit models to the data to observe characteristics that are important, such as bias,
precision, and power to discriminate among alternative models. Several articles have
addressed power calculations and optimal sample size selection for occupancy stud-
ies and we direct readers to those articles (Bailey et al. 2007; MacKenzie and Royle
2005). In addition, if a study objective is to contrast the occupancy in two or more
different types of habitat, then it is essential that the sample contain a suitable number
of samples from each type (this is a model-based analogue to the stratified random
sample in design-based inference).

Defining the Season

The definition and duration of the sampling period will depend on a study’s objec-
tives. If interest in primate occurrence is during a species’ mating season, then this
is the period during which sampling should occur. The length of sampling should
also be considered with respect to the closure assumption (site occupancy status does
not change over the sampling period). Maintaining a relatively short season will help
ensure this assumption is not violated. It is the definition of the season that determines
the validity of the closure assumption.

Typically, it is best to choose a period when the species spatial distribution is
relatively stable (i.e., avoid migratory or dispersal periods). Within that study period,
you can use what is known about the species ecology to help define an appropriate
survey occasion. For example, if it is known that the primate typically rotates among
8–10 feeding locations within a week, and you have placed a camera at one randomly
chosen tree within a grid cell size that corresponds to the species spatial range, then
it makes sense to define your occasion as a week, because if the species is using the
grid cell, it is likely to visit the tree at least once within a given occasion. However,
if the species moves out of the area during the middle of the study period and is
no longer available for detection (i.e., the probability of detection is zero) than the
closure assumption is violated.

A combination of the study period and the species’ ecology helps define an appro-
priate sampling occasion. It is also important to define occasions such that detection
probabilities are not so low they cause estimation problems (Mackenzie et al.
2002). Generally, detection probabilities per occasions lower than 0.10 are prone to
cause difficulties in estimating parameters. Estimating lower per occasion detection
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probabilities is possible, if there are many occasions and little variation in detec-
tion probability among occasions. When using cameras to sample highly mobile
species, it is often convenient to define an occasion as a day or week, so as to achieve
a moderate detection probability. Using a day as an occasion is often appropriate
because it matches with the circadian rhythm of many species’ activity. However,
if daily detection probability is very low, numerical convergence of the maximum
likelihood could fail, and thus necessitate redefining an occasion to a longer period of
time.

Let us consider three different studies with very different definitions for a site and
season. In the first study, the objective is to understand whether primate occupancy
of certain habitat patches is driven by highly clumped food during the dry season.
We define the geographic area in which we would like to make inference, identify all
potential sites, and then deploy cameras randomly within patches that have and do
not have this food resource. We define the season as a 2-wk period during the middle
of the dry season where the effect of the food is potentially strongest and where
it is reasonable to assume that species ranging is stable, thus meeting the closure
assumption. If the closure assumption is unlikely to hold, but the species availability
can be considered a random process, we may want to consider occupancy as the
“probability of use.”

In the second study, the objective is to determine habitat fragment use of a primate
species during cyclones. The researcher identifies a population of fragments of inter-
est, randomly selects a subset of these fragments to sample, and deploys one or more
cameras in each fragment. Before a cyclone reaches the fragments, the researcher
activates the cameras. To estimate occupancy at the fragment level, we could com-
bine the detection histories of all cameras within each fragment, thus appropriately
treating the fragment as the site.

Lastly, in the third study, the objective is to determine occupancy of a terres-
trial primate species throughout a national park that is divided into 10 management
zones based on ecoregions. Each ecoregion is managed differently; thus the occur-
rence of the primate will affect future management decisions differently throughout
the park. We do not believe the occupancy of these ecoregions to vary within the
wet season, which is 5 mo, as the primate maintains a stable home range. We have
enough cameras to sample two ecoregions simultaneously. Thus, in each month
of the wet season, we select two ecoregions, randomly select sites, and deploy
cameras.

Note that the scale and season of occupancy for each study is different and not
comparable, and determined by the objective. In the first study, the season is rela-
tively short, to determine a possible driver of distributional patterns by a resource at
a local level. In the second study, the season is defined by a cyclone event, and in the
third study, the season is long to consider relatively stable landscape-scale distribu-
tional patterns. Also, in the first and third studies, we are able to define how many
sites to sample by using as many cameras as available, while in the second study,
sites are defined by the availability of fragments in the study area. In the first two
studies, our objectives were driven by ecological relationships, while the third study
was motivated by future decisions that may affect occurrence at a landscape scale
throughout a national park.
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The Relationship Between Occupancy and Abundance

There is a natural tendency to relate occupancy and abundance, however, this needs to
be done with some caution. Occupancy, as described here, is simply a discretization
of a species abundance distribution across the landscape, ψi = Pr (Ni > 0), where
Ni is the local abundance at site i (Royle et al. 2005). Occupied sites may have a
single individual or many individuals, but the occupancy state is the same for all
these sites. Unique cases may exist for low-density, highly territorial species, where
occupied sites would be expected to contain only a single or pair of individuals. In
these cases the relationship between occupancy and abundance may approach equity
(MacKenzie and Nichols 2004), but these cases are likely rare in primate studies
where groups of varying size travel together.

It is often expected that local abundance has a strong effect on detection prob-
ability at occupied sites (Royle and Nichols 2003). Simply, it is likely to be easier
to detect the species at a site with high density than a low density. If we consider a
site as a habitat fragment, we are more likely to detect a primate species living in a
group of 30 than a group of 2. In these instances, an explicit relationship between
the two quantities can be expressed as pi = 1 − (1 − r)Ni , where pi is the proba-
bility of detecting one or more individual of the target species at an occupied site i

(i.e., the usual species detection probability), r is the probability that a given individ-
ual is detected, and Ni is the number of individuals present at site i. If investigators
believe that variation in local abundance is a primary source of heterogeneity in detec-
tion probability that cannot be accounted for with habitat variables, then models that
explicitly account for the relationship between detection probability and local abun-
dance should be employed to reduce bias in occupancy estimates (Royle and Nichols
2003). However, it is always the case that there will be covariates the investigator
will not be able to model that affect detection. For example, the investigator may not
have the data, or is unaware of the importance of certain covariates. The solution for
this problem goes back to random sampling, which minimizes the probability that
confounding variables affect the estimates of detection.

Occupancy Model Extensions

For some studies, static occupancy of a site may not be a primary interest. There may
be a greater interest in the factors that affect occupancy dynamics and thus changes
in species distributions. MacKenzie et al. (2003) present a multiseason model that
focuses on the dynamic processes of extinction and colonization at sites, which are
the primary determinants of future occupancy (Fig. 3). Extinction and colonization
may be influenced and thus modeled by habitat features or changes over time (e.g.,
seasonal or annual changes). For example, instead of modeling primate occupancy
as a function of some previous disturbance, we can draw direct inference about
how this disturbance influences changes in occupancy across seasons. The multi-
season model links single seasons together, where sites are still surveyed multiple
times within a season, when occupancy is considered static, to correct for imperfect
detection.
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Fig. 3 Diagram of changes in a sites species occupancy caused by extinction and colonization across
multiple seasons. Col = colonized. Ext = extinct.

Another occupancy model of particular use to primate studies using cameras is
a multiscale model. Following from the cyclone example above, when we collapse
detection histories from multiple cameras and treat the fragment as the site, we lose
any inference of “use” at the camera site. There may be interest in how a species is
using specific habitats within a fragment. Instead of collapsing detection histories,
we can explicitly estimate occupancy at the fragment and “use” or availability at the
camera site scale using a multiscale occupancy model (Nichols et al. 2008). An addi-
tional advantage to this model is that multiple methods can easily be combined if they
are independent of each other, for example, using observer area searches and cam-
eras. This allows a direct comparison in the detection efficiency of different methods,
as well as a way to reduce potential heterogeneity in detection; some individuals of a
species may be more difficult to detect with certain methods.

Modeling Implementation and Conclusion

Both camera traps and occupancy could be of great use in the study and conservation
of wild primates. One recent study used cameras to validate previously unconfirmed
sightings of the critically endangered greater bamboo lemur (Prolemur simus) in
Madagascar (Olson et al. 2012). Such work helps to increase the known distribution
of this rare species, although species presence is less helpful in understanding distri-
butional patterns of why a species occurs where it does. By following study design
and occupancy modeling procedures outlined here, cameras can be used to under-
stand the many factors that likely determine greater bamboo lemur occurrence on the
landscape. This knowledge is critical for successful long-term conservation actions
to restore this unique species to its former population and range.

A number of free software packages are available to implement occupancy models
discussed here, as well as many others. Some packages are used in annual train-
ing workshops (http://www.phidot.org/forum/). Two packages with a graphical user
interface and considerable documentation are programs MARK (White and Burnham
1999) and PRESENCE (Hines 2013). For users of the R programming language (R
Core Team 2013), the package “unmarked” includes occupancy models (Fiske and
Chandler 2011). Bayesian inference can be done directly through OpenBugs (Lunn

http://www.phidot.org/forum/
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et al. 2009), where pseudo-code is used directly to define the model (Royle and
Dorazio 2008) or alternatively indirectly through PRESENCE. See ESM3 for links
to documentation and software.

Camera traps and occupancy are being used throughout the world to better
understand rare and elusive species in the hopes of implementing more effective
conservation strategies. Primate conservation could benefit equally from the many
important insights that could be gained when using camera traps in an occupancy
framework. We hope this paper will encourage primatologists to add these methods
to their tool kits.
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