Electronic Supplementary Material 2

The single-season occupancy model can be naturally defined hierarchically, where there is an explicit separation of an observation model and a latent process model. This model is defined for site-level variation on detection and occupancy as written, such that we observe y_i (the number of detections per occupied site) across *i* sites with *k* replicate surveys with probability p_i :

Observation Model:
$$y_i \sim \begin{cases} 0, z_i = 0\\ Binom(k_i, p_i), z_i = 1 \end{cases}$$

Process Model: $z_i \sim Bern(\psi_i)$

The model parameters for detection (p_i) and occupancy (ψ_i) can be further modeled to incorporate biological hypotheses concerning covariate effects (e.g., habitat, survey effort):

Parameter Model: $probit(p_i) = \mathbf{W}'_i \boldsymbol{\alpha}$ $probit(\psi_i) = \mathbf{X}'_i \boldsymbol{\beta}$ Hyper-parameter Model (priors): $\boldsymbol{\alpha} \sim Normal(\boldsymbol{\mu}_{\alpha}, \boldsymbol{\Sigma}_{\alpha})$ $\boldsymbol{\beta} \sim Normal(\boldsymbol{\mu}_{\beta}, \boldsymbol{\Sigma}_{\beta})$

The joint posterior distribution can be written conditionally as the probability of all unknown parameters, given the data (where [] indicate a probability distribution),

$$[\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{z} | \boldsymbol{y}] \propto \left(\prod_{i=1}^{N} [y_i | p_i] [z_i | \boldsymbol{\psi}_i] \right) [\boldsymbol{\alpha}] [\boldsymbol{\beta}]$$
(1)

The model can be fit using a Bayesian method, where inference is achieved by sampling full conditional posterior distributions of each unknown parameter (α, β, z) separately using Markov chain Monte Carlo methods.