Supporting Information

We consider four hypothesized population models for sandhill cranes of the Rocky Mountain Population using available empirical population-level estimates of vital rates. We define them using population projection matrices (PPM). For all PPM, we used a birth-pulse, post-breeding stage-structured model. Parameters are defined as such: S_1 is juvenile survival, S_i is survival between ages i and i + 1, and F is per capita fecundity. To make fecundity apply to those individuals in the terminal class that reach the breeding area, we scale fecundity by partial year terminal survival.

$$PPM1 = \begin{pmatrix} 0 & 0 & 0 & 0 & F \\ S_1 & 0 & 0 & 0 & 0 \\ 0 & S_2 & 0 & 0 & 0 \\ 0 & 0 & S_3 & 0 & 0 \\ 0 & 0 & 0 & S_4 & S_5 \end{pmatrix}$$

where $F = PropBreeders \times brood \times S_5^{8/12}/2$ PropBreeders = 0.20 from Drewien, R.C., pers. comm. and Case and Sanders 2009 brood = 1.23 from Drewien (2011).

	0	0	0	0	0	0	0	0	$_{F}$)
	S_1	0	0	0	0	0	0	0	0
	0	S_2	0	0	0	0	0	0	0
PPM2 =	0	0	S_3	0	0	0	0	0	0
	0	0	0	S_4	0	0	0	0	0
	0	0	0	0	S_5	0	0	0	0
	0	0	0	0	0	S_6	0	0	0
	0	0	0	0	0	0	S_7	0	0
	0	0	0	0	0	0	0	S_8	S_9

where $F = PropBreeders \times brood \times S_9^{8/12}/2$

PropBreeders = 0.20 from Drewien, R.C., pers. comm. and Case and Sanders 2009 brood = 1.23 from Drewien (2011).

	$\left(\begin{array}{c} \alpha_1 \end{array} \right)$	α_2	α_3	α_4	α_5	α_6	α_7	α_8	α_9
	S_1	0	0	0	0	0	0	0	0
	0	S_2	0	0	0	0	0	0	0
PPM3 =	0	0	S_3	0	0	0	0	0	0
	0	0	0	S_4	0	0	0	0	0
	0	0	0	0	S_5	0	0	0	0
	0	0	0	0	0	S_6	0	0	0
	0	0	0	0	0	0	S_7	0	0
	0	0	0	0	0	0	0	S_8	S_9

where $\alpha_i = PropBreeding_i \times brood \times S_9^{8/12}/2.$

 $PropBreeding = [0 \ 0 \ 0 \ 0 \ 0.154 \ 0.333 \ 0.600 \ 0.500]$ from Tacha (1989).

brood = 1.23 from Drewien (2011).

$$PPM4 = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \alpha_5 & \alpha_6 & \alpha_7 & \alpha_8 & \alpha_9 \\ S_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & S_2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & S_3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & S_4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & S_5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & S_6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & S_7 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & S_8 & S_9 \end{pmatrix}$$

where $\alpha_i = PropBreeding_i \times brood \times S_9^{8/12}/2$. $PropBreeding = [0 \ 0 \ 0.05 \ 0 \ 0.10 \ 0.20 \ 0.40 \ 0.50 \ 1]$ from Tacha (1989). brood = 1.23 from Drewien (2011).

Table A1. Single vital rate perturbations to sandhill crane population projection matrices (PPM) that stabilize long-term growth ($\lambda_{\infty} = 1$). The most sensitive survival by stage (S_{stage}) and per capita fecundity (F_{stage}) for each PPM are highlighted in grey.

Vital Rate	PPM1	PPM2	PPM3	PPM4
F or $F9^a$	-0.06	-0.05	-0.27	-0.05
F8	\mathbf{NA}^{b}	NA	NA	NF^c
F7	NA	NA	NA	NF
F6	NA	NA	NA	NF
F5	NA	NA	NA	NF
F4	NA	NA	NA	NF
S_1	-0.42	-0.34	-0.67	-0.36
S_2	-0.47	-0.38	-0.75	-0.41
S_3	-0.47	-0.38	-0.75	-0.41
S_4	-0.47	-0.38	-0.75	-0.41
S_5	-0.04	-0.38	-0.75	-0.41
S_6	NA	-0.38	-0.76	-0.42
S_7	NA	-0.38	-0.79	-0.42
S_8	NA	-0.38	-0.83	-0.44
S_9	NA	-0.03	-0.29	-0.04

 $^a\mathrm{F}$ applies only to PPM1 and F9 applies to PPM2-4.

 b NA = Not Applicable.

 c NF = Not Feasible.

Figure A1: Projected population size over time, transient population growth, and transient population growth relative to λ_{∞} across the complete set of initial population structures at intervals of 0.05 for PPM2. The numbers in the legend indicate the initial stage (1= juvenile, 9= oldest stage) with the majority of individuals. The solid black line in the top figure is population growth according to the stable stage distribution.

Figure A2: Projected population size over time, transient population growth, and transient population growth relative to λ_{∞} across the complete set of initial population structures at intervals of 0.05 for PPM3. The numbers in the legend indicate the initial stage (1= juvenile, 9= oldest stage) with the majority of individuals. The solid black line in the top figure is population growth according to the stable stage distribution.

Figure A3: Projected population size over time, transient population growth, and transient population growth relative to λ_{∞} across the complete set of initial population structures at intervals of 0.05 for PPM4. The numbers in the legend indicate the initial stage (1= juvenile, 9= oldest stage) with the majority of individuals. The solid black line in the top figure is population growth according to the stable stage distribution.

Figure A4: Proportion of projected populations initialized at all permutations of stage structures that: are growing (GR>1), are growing equal to or larger than the asymptotic growth rate, are harvestable (Pop. $\geq 15,000$), and are above the lowest population objective (Pop. $\geq 17,000$).

Figure A5: Traditional linear and non-linear (transfer function analysis) sensitivity analyses of vital rates of PPM1 and their affect on the asymptotic growth rate (λ_{∞}) . Notice the y-axes are not the same.

Figure A6: Traditional linear and non-linear (transfer function analysis) sensitivity analyses of vital rates of PPM2 and their affect on the asymptotic growth rate (λ_{∞}). Notice the y-axes are not scaled the same.

Figure A7: Traditional linear and non-linear (transfer function analysis) sensitivity analyses of vital rates of PPM3 and their affect on the asymptotic growth rate (λ_{∞}). Notice the y-axes are not scaled the same.

Figure A8: Traditional linear and non-linear (transfer function analysis) sensitivity analyses of vital rates of PPM4 and their affect on the asymptotic growth rate (λ_{∞}) . Notice the y-axes are not scaled the same.

Figure A9: Non-linear perturbation analyses of vital rates of PPM1 and their effect on population inertia and initial stage distribution; Initial pre-perturbation stage distributions: "SSD" is stable stage distribution, "Even" is a stage distribution with individuals distributed evenly, "Adult" is a population with only individuals of the oldest stage, and "Tacha" assumes a stage distribution estimated from the mid-continent population of sandhill cranes (Tacha 1989).

Figure A10: Non-linear perturbation analyses of vital rates of PPM2 and their effect on population inertia; comparison using different initial stage distributions: "SSD" is stable stage distribution, "Even" is a stage distribution with individuals distributed evenly, "Adult" is a population with only individuals of the oldest stage, and "Tacha" assumes a stage distribution estimated from the mid-continent population of sandhill cranes (Tacha 1989).

Figure A11: Non-linear perturbation analyses of vital rates of PPM3 and their effect on population inertia; comparison using different initial stage distributions: "SSD" is stable stage distribution, "Even" is a stage distribution with individuals distributed evenly, "Adult" is a population with only individuals of the oldest stage, and "Tacha" assumes a stage distribution estimated from the mid-continent population of sandhill cranes (Tacha 1989).

Figure A12: Non-linear perturbation analyses of vital rates of PPM4 and their effect on population inertia; comparison using different initial stage distributions: "SSD" is stable stage distribution, "Even" is a stage distribution with individuals distributed evenly, "Adult" is a population with only individuals of the oldest stage, and "Tacha" assumes a stage distribution estimated from the mid-continent population of sandhill cranes (Tacha 1989).

Figure A13: The Keyfitz's Δ between the stable stage distribution (SSD) of non-harvested and stochastically harvested populations, initialized at either the SSD of the non-harvested population or an even stage distribution; zero indicates no difference between two population stage structures and 1 indicates the maximum difference. Harvest effected the stage structure evenly, on average.

References

- Case, D., and S. Sanders. 2009. Priority information needs for sandhill cranes: a funding strategy. Tech. rep., U.S. Fish and Wildlife Service.
- Drewien, R.C. 2011. Recruitment survey of the rocky mountain population of greater sandhill cranes. Unpublished Report to U.S. Fish and Wildlife Service, Migratory Bird Office, Region 6.
- Tacha, T.C., and D.E. Haley, and P.A. Vohs. 1989. Age of sexual maturity of sandhill cranes from mid-continental North America. Journal of Wildlife Management, **53**, 43–46.