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Abstract

Understanding patterns of species occurrence and the processes underlying these patterns

is fundamental to the study of ecology. One of the more commonly used approaches to

investigate species occurrence patterns is occupancy modeling, which can account for

imperfect detection of a species during surveys. In recent years, there has been a prolifera-

tion of Bayesian modeling in ecology, which includes fitting Bayesian occupancy models.

The Bayesian framework is appealing to ecologists for many reasons, including the ability to

incorporate prior information through the specification of prior distributions on parameters.

While ecologists almost exclusively intend to choose priors so that they are “uninformative”

or “vague”, such priors can easily be unintentionally highly informative. Here we report on

how the specification of a “vague” normally distributed (i.e., Gaussian) prior on coefficients

in Bayesian occupancy models can unintentionally influence parameter estimation. Using

both simulated data and empirical examples, we illustrate how this issue likely compromises

inference about species-habitat relationships. While the extent to which these informative

priors influence inference depends on the data set, researchers fitting Bayesian occupancy

models should conduct sensitivity analyses to ensure intended inference, or employ less

commonly used priors that are less informative (e.g., logistic or t prior distributions). We pro-

vide suggestions for addressing this issue in occupancy studies, and an online tool for

exploring this issue under different contexts.

Introduction

Understanding species distributions, and the environmental factors that influence occurrence is

fundamental to ecology. Our knowledge of many well-studied topics in ecology, including niche

partitioning, trophic interactions and metapopulation dynamics, depend on knowing which spe-

cies occur in an area and why. Furthermore, occurrence patterns are critical for making conserva-

tion and management decisions; placement of reserve boundaries, or assessments of whether

development will impact threatened and endangered species depend entirely on knowing whether

a target species is present. Research on the patterns and drivers of species occurrence has been

ongoing for many years (see [1] for a brief discussion), with major advancements over the past
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two decades (see [2] for a review). These advancements have stemmed from a combination of

enhanced computational power, the advent of geographical information systems (GIS), and the

development of a diversity of field-sampling and statistical modeling approaches that allow for

detailed assessments of species habitat-relationships and the ensuing distribution patterns.

At the forefront of the methodological advancements in modeling species distributions is

the explicit recognition and correction for sampling biases, such as the non-detection of a spe-

cies in an area, despite it being present (i.e., false-negatives; [3]). These ‘occupancy models’ can

account for the inherent imperfect detection of a species by simultaneously modeling the

observation and occurrence processes. The development and refinement of these types of

models has been a major focus of the ecological literature; numerous publications have devel-

oped and described occupancy models designed to address different ecological processes or

sampling designs (see [4]). In addition, there now are books providing “how-to” guides [4,5]

and approachable software for readily fitting occupancy models to ecological data (e.g.,

unmarked, MARK and PRESENCE [6–8]). These resources have allowed researchers to apply

occupancy models to a range of ecological questions.

Concomitant with the increasing prevalence of occupancy models has been an increase in

the use of Bayesian statistics in ecology [9–11]. The adoption of Bayesian statistics by ecologists

has likely been driven by a number of factors, including the straightforward manner in which

hierarchical or multi-level models can be specified and fit. Occupancy models are naturally

structured hierarchically (see model below) making them straightforward to fit using Bayesian

methods and there are numerous published and online resources that provide code to do so

(e.g., [4,5]). The increase in the availability of these resources has made the application of

Bayesian methods more approachable for practitioners and researchers.

A potential risk of the proliferation of easily accessible software and code is that researchers

are perhaps fitting models without a clear understanding of the consequences of modeling

choices. In Bayesian modeling, one choice that has the potential to strongly influence statistical

inference is that of prior distributions [12]. Briefly, Bayesian inference focuses on summarizing

posterior distributions of model parameters, which are informed jointly by the likelihood and

the prior distributions. The relative influence each has on the posterior distribution depends

on their information quantity. A model’s likelihood is determined entirely by the structure of

the model and the data, while prior distributions represent our best knowledge about the dis-

tribution of a parameter prior to model fitting. Guidance on the choice of priors when fitting

Bayesian models in ecology is limited. In our experience, researchers typically attempt to

choose priors such that they are expected to have minimal or no influence on the resulting

inference (i.e., “flat,” “vague,” or “uninformative” priors). Researchers commonly pick these

priors so that parametric inference is primarily driven by the data, rather than the prior (e.g.,

[13]). However, seemingly uninformative priors often can have strong unintended conse-

quences [14,15]. Here, we explore this issue with a specific focus on occupancy models. We

show how under certain conditions, a commonly used prior can strongly influence statistical

inference. We provide examples of when the use of this prior is an issue and offer guidance

and alternatives when fitting Bayesian occupancy models.

A basic Bayesian occupancy model

In the analyses and discussion below, we focus on a simple site occupancy model, formulated

in a hierarchical Bayesian framework, which takes the following form,

yi � Binomialðni; miÞ

mi ¼ p � zi ð1Þ

Priors for Bayesian occupancy models
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zi � BernoulliðcÞ

where yi indicates the number of detections at site i, out of a total of ni sampling occasions per

site, zi is a latent (unobserved) parameter indicating the true occupancy state of the site

(1 = occupied and 0 = unoccupied), p is the probability of detecting a species at the site condi-

tional on it being occupied, and ψ is the probability that a site is occupied. We note that the

model also can be defined in terms of species detections or non-detections in individual sur-

veys across sites [3]. In a full Bayesian analysis, prior distributions would be specified for the

unknown parameters, p and ψ. Often, uniform prior distributions between 0 and 1 are chosen

(e.g., [4]).

Typically, researchers are interested in investigating hypotheses of whether environmental

covariates influence species occurrence. In this case, the above model can be extended to

include covariates on the occupancy process, which is most often specified as a logit regression

model as,

logitðciÞ ¼ aþ xi β
0 ð2Þ

where ψi is the site-specific probability of occupancy, which is influenced by a matrix of

covariates xi (for example, land cover type at the site), a corresponding vector of coefficients

β and an intercept, α. The logit is a link function (i.e., loge(
c

1� c
)) that takes probability values,

which are restricted between 0 and 1, and projects them to values on the real number line,

making estimation easier due to the lack of numerical boundaries. To recover occupancy

probabilities, we use the inverse-logit of the linear combination of the intercept and covari-

ates (i.e., logit-1 α þ xi βð Þ ¼ eαþxiβ
1þeαþxiβ). We note that other link functions are available for this

model, such as the probit or complementary log-log link, but in our experience, these link

functions are used less in the ecological literature (though we note that use of the probit link

is increasing).

The issue of normally distributed priors in occupancy modeling

The convention in Bayesian regression models is to specify normally distributed (i.e., Gaussian

distribution) priors for the intercept (α) and coefficients (β), with a mean of 0 and a standard

deviation (σ; e.g., α ~ Normal(0, σ) [16]; technically, in the example above a multivariate Nor-

mal prior with a vector of 0s for the mean and a covariance matrix with 0’s in all the off-diago-

nal positions would be used for β). Normally distributed priors are a sensible choice for a

range of reasons discussed elsewhere (e.g., [16]), but see Gelman et al. [17] for a discussion of

why alternative priors might be preferred in certain cases. When conducting regression analy-

ses, researchers typically specify these priors with a large standard deviation (σ) hoping to

make the influence of the prior more diffuse. In simple linear regression, this choice of prior

has the intended result. However, the use of such “vague” Normal priors in occupancy model-

ing (as well as any logistic regression model) has a potentially pernicious outcome. The issue is

that the logit transformation is non-linear, such that as values become more negative or more

positive, the transformed probability values approach zero and one, respectively (S1 Fig). This

nonlinearity in the transformation leads to some priors that are intended to be “uninforma-

tive” becoming informative on the probability scale and strongly bimodal with large values of

σ (Fig 1 and S2 Fig). It is a mathematical truism that a normally distributed prior is not invari-

ant to this transformation—however, we believe that the consequences for modeling occu-

pancy are not well appreciated in the ecological literature.

Priors for Bayesian occupancy models
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Alternative prior specifications

Numerous alternative prior specifications exist for coefficients in regression models. However,

there is no consensus on prior specifications for logit-scaled parameters in logistic regression

or occupancy models, and there probably should not be (see Discussion). However, the statisti-

cal and ecological literature does provide some guidance on implementing weakly informative

priors. First, an exact prior distribution that is completely invariant to transformation, such as

between the logit and probability scale, is the Jeffrey’s prior [18], but this prior is not uninfor-

mative and puts high probability near ψ = 0 and ψ = 1; thus a Jeffrey’s prior might not be more

appropriate than a Normal distribution with small σ. Gelman et al. [17] suggested the use of a

Cauchy distribution with center 0 and scale 2.5 as a default prior when conducting logistic

regression. However, this prior still displays some bimodality at ψ = 0 and ψ = 1 and thus has

the potential to affect posterior distributions. A very logical suggestion was made by Dorazio

et al. [19], recommending that a weakly informative prior should assign low probability to

logit-scaled values outside of -5 and 5, translating into probability values of 0.01 and 0.99 and

thus approximating a Uniform(0,1) distribution for ψ. Their solution was to use a prior t dis-

tribution that was zero centered with scale parameter of 1.566 and degrees of freedom 7.763

Fig 1. Demonstration of a Normal prior distribution transformed to the probability scale. α is the occupancy probability before transformation to the probability

scale using the logit link; see Eq 2 in the text; panels vary by the standard deviation (σ) of the prior distribution. A small σ gives high probability density around zero,

while increasing levels move this probability density towards zero and one, which eventually begins to accumulate near these values. Note that y-axes differ substantially

among the panels.

https://doi.org/10.1371/journal.pone.0192819.g001

Priors for Bayesian occupancy models

PLOS ONE | https://doi.org/10.1371/journal.pone.0192819 February 26, 2018 4 / 13

https://doi.org/10.1371/journal.pone.0192819.g001
https://doi.org/10.1371/journal.pone.0192819


(α* t(σ = 1.566, ν = 7.763; Fig 2). Alternatively, a more exact specification of an implied Uni-

form(0,1) prior for ψ has been shown to be a Logistic distribution prior for α centered at 0

with scale parameter 1 (α~ Logistic(μ = 0, σ = 1) [20]; Fig 2). The additional benefit of the

Logistic distribution is that it is easily implemented in JAGS and Winbugs. Below, we demon-

strate the influence of these priors as well as the normal priors on inference from occupancy

models, using both simulated and empirical datasets.

Methods

We first demonstrate the influence of a Normal prior by simulating example occupancy data-

sets (using ψ = 0.9, p = 0.2, n =10, where n is the number of occasions) at a varying number of

sites (50, 100, 200, and 400). For each dataset, we first fit the data in a maximum likelihood

framework using the statistical program MARK [7] via the R package ‘RMark’ [21] in the

programming language R [22]. Next, to illustrate the influence of the prior relative to the

likelihood, we fit these models in a Bayesian framework (above model without covariates; logit

(ψi) = α and prior α* Normal(0, τ) using JAGS [23] via the ‘rjags’ package ([24]; see S1 and

S2 Files for example code). In JAGS, the uncertainty parameter for the Normal distribution is

specified as the precision (τ), which is 1/σ2, where σ is the standard deviation of the Normal

distribution. We fit the Bayesian model with normally distributed priors with σ values of 0.25,

0.5, 1, 2, 5, 10, 100, 500, and 1,000; algorithms were run for 10,000 Markov chain Monte Carlo

(MCMC) iterations, removing the first 5,000 as a period of burn-in. Lastly, we fit the same sim-

ulated data using the t and Logistic distributions and compared posterior distributions with

maximum likelihood estimates (MLE). We investigated convergence in both paradigms by

fitting the models with random initial values, checking for estimate consistency. The parame-

ters from the Bayesian analysis were also investigated for convergence by visually examining

Fig 2. Robustness of logistic and t distribution to transformation. Panels A and B: demonstration of the Logistic

and t distributions transformed to the probability scale. Panels C and D: posterior distributions (solid curves) and the

corresponding maximum likelihood estimates (vertical lines) of occupancy probability from simulated data sets with

varying underlying occupancy probabilities.

https://doi.org/10.1371/journal.pone.0192819.g002
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posterior distribution trace plots to ensure proper mixing and by calculating the Gelman-

Rubin diagnostic [25] to ensure values were close to 1, which they always were. We compare

the likelihood results, which are not influenced by the assumed prior distribution, with the

Bayesian results by plotting posterior distributions of ψ for each dataset and prior, along with

MLE. Assuming convergence and a sufficiently large number of samples, the discrepancy

between the posterior mode (i.e., most probable value) and the MLE is a consequence of the

assumed prior. We note that our focus is different from many simulation studies, where the

aim is to evaluate the discrepancies between estimated and true parameter values. Here, we are

strictly interested in unintended consequences of prior specifications and its influence on

parametric inference.

We further illustrate this issue by fitting occupancy models to empirical avian point count

data collected by McGarigal and McComb [26]. The authors visited over 1,000 sites in the Ore-

gon Coast Range, USA, four times between 1990 and 1992. We fit the basic occupancy model

with covariates to detections for three species: gray jay (Perisoreus Canadensis), Steller’s jay

(Cyanocitta stelleri) and song sparrow (Melospiza melodia) with two covariates: the first repre-

senting the distance to forest edges, and the other representing the proportion of the area

within 1,000 m comprised of mature forest (derived from a gradient nearest neighbor method;

[27]). We specified a Uniform prior on detection probability (p ~ Uniform(0,1)), and a nor-

mally distributed prior on the intercept and coefficients of occupancy probability with a mean

of 0 and σ2 ranging between 1 and 1,000 (1, 10, 100, and 1,000). We standardized both covari-

ates (subtracting the mean and dividing by the standard deviation), and fit the Bayesian occu-

pancy model with 10,000 MCMC iterations, dropping the first 5,000 as burn-in. Diagnosis of

convergence followed the same procedure outlined above for the simulated datasets. We also

fit each model in MARK, using the ‘RMark’ package. For comparison, we fit the same data

using the t and Logistic prior distributions.

To assess the relative prevalence of the use of informative Normal priors in the ecological

literature we performed a review of the use of priors in Bayesian occupancy modeling. We

searched for articles published since 2010 using the term “Bayesian occupancy model” on Web

of Science (http://apps.webofknowledge.com). We filtered results to include only those articles

published in the field of ecology. We further eliminated any articles that focused on the devel-

opment and refinement of methods for fitting occupancy models. We reviewed a random sam-

ple of 55 of the remaining 108 articles, attempting to identify the priors specified.

Results

For the simulated datasets with normally distributed priors, when the prior standard deviation

was small (i.e., σ< 2) the posterior mode was always smaller than the MLE (Fig 3), as these pri-

ors drew the posterior towards a probability of 0.5. With a standard deviation of 2, the poste-

rior mode was approximately the MLE. At intermediate values of the standard deviation

(between 5 and 10), the posterior mode was close to the MLE, but the proximity was influ-

enced by the number of surveyed sites (Fig 3). As σ became large (>100), the posterior became

bimodal, with one mode close to the MLE and the other close to 1 (Fig 2). Importantly, having

a large number of sampled sites only mitigated the influence of the prior in a relatively narrow

band of values. Generally, the nature of the influence of the prior on the posterior and subse-

quent ecological inference depends on a combination of effects including: 1) the true underly-

ing detection and occupancy probabilities; 2) the number of sampled sites; 3) the number of

surveys per site; and, 4) the linear combination of coefficients and covariates. Importantly, the

linear combination (i.e., α + xiβ0) is the quantity that is transformed, and thus in some cases

very large magnitude values for coefficients, when combined with certain values of covariates,

Priors for Bayesian occupancy models
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could lead to scenarios where the transformation is not impactful (e.g., when there is a strong

effect of a covariate that ranges over a very small set of values). However, in other cases, the use

of Normal prior distributions with a large σ can seriously affect parametric estimates. Occu-

pancy models using the Logistic and t distribution priors estimated posterior modes corre-

sponding to the MLE under all sample sizes (Fig 2).

In our empirical analysis, song sparrows were detected at 271 of 1,046 sites, Steller’s jays

were detected at 297 sites, and gray jays were detected at 109 sites. We found clear effects of the

prior for the gray jay and Steller’s jay data, but not the song sparrow. For both jay species, the

median and upper credible bound increased with the prior variance (σ2), while for the song

sparrow, there were no apparent effects of the prior on the posterior (S1 Table). For the jays,

estimates approaching the MLE could only be obtained by fine-tuning the prior iteratively

(results not shown here). Thus, for these datasets, there are very few specifications of the Nor-

mal prior distribution that will not impact the posterior distribution and thus our inference on

occupancy. Further, many more MCMC iterations were needed to achieve convergence for the

gray jay model fit with values of σ2 greater than 10, likely due to bimodality similar to that seen

in the analysis of simulated datasets (S3 Fig). In addition to causing issues with convergence, the

Fig 3. Effects of prior variance on posterior occupancy probability. Posterior distributions (solid curves) and the corresponding maximum likelihood estimates

(vertical lines) of occupancy probability from simulated data sets of varying number of sites (N = 50, 100, 200, and 400); data were simulated with a true occupancy of

0.9, a per occasion detection probability of 0.2 and 10 sampling occasions. If prior distributions were truly uninformative, the posterior mode would correspond to the

maximum likelihood estimate.

https://doi.org/10.1371/journal.pone.0192819.g003

Priors for Bayesian occupancy models

PLOS ONE | https://doi.org/10.1371/journal.pone.0192819 February 26, 2018 7 / 13

https://doi.org/10.1371/journal.pone.0192819.g003
https://doi.org/10.1371/journal.pone.0192819


gray jay results also highlight how these priors can impact inference on the habitat factors influ-

encing occupancy. Whether or not credible intervals include 0 is often taken as evidence for the

existence of an effect of a covariate on occupancy (though we note that Bayesian analyses pro-

vide full posterior distributions for the probability of a parameter conditional on the data, and

thus much more information about parameters than is given when solely reporting the 95%

credible intervals). For Steller’s jays, the 95% credible intervals (and 95% confidence intervals

for the MARK analysis) for the effect of mature forest and edges all overlapped 0, indicating

weak evidence for an effect. However, for gray jays the credible intervals (and confidence inter-

vals for the MARK analysis) did not overlap 0 except in the Bayesian analysis when σ2 was set to

1,000 (S1 Table). Thus, one might draw different conclusions about the influence of mature for-

est on this species depending only on the specification of the prior. We note here that the low

detection probability for gray jays and Steller’s jays could be a result of a lack of closure (i.e., that

they were not always available for detection during a survey); however occupancy models are

routinely fit to datasets with similar violations of assumptions (see [28] for a discussion), and

with even lower detection probabilities, and thus we believe this example is still illustrative of

the issues that can arise from using a prior that is assumed to be non-informative. Models fit

with the Logistic or t priors more closely approximated the MLEs than many of the Normal pri-

ors, but interestingly did not mirror the MLEs as closely as expected from simulations. Despite

the fact that these models did not match the MLEs, the use of these prior did not require itera-

tive model fitting, and thus they should be more generally applicable in occupancy models.

The use of priors that could lead to inferential issues such as those outlined above was com-

mon in the recent literature. We found 108 articles published since 2010 that contained the

keyphrase “Bayesian occupancy model.” Of the 55 articles reviewed, only 16 articles actually

used the model described above (others either did not use occupancy models at all, or fit more

complex models, such as multispecies occupancy models). Of these 16, 9 reported using priors

on α, above, that were incidentally informative on the probability scale. How informative these

priors were varied, with some researchers using only moderately informative priors (e.g., Uni-

form distribution between -8 and 8), and others using priors that were highly informative

when transformed to the probability scale (e.g., Normal with a variance of>1,000,000). Fur-

ther, 4 of the articles did not report their priors or described them only as uninformative. Only

3 articles used priors that were likely to be uninformative, based on our results above. We

note, that some researchers did report conducting sensitivity analyses to their priors.

Discussion and suggested guidance

The results that we present above, combined with the potential prevalence of this issue in the

literature, raise concerns about the inference made in regards to species-habitat relationship

and resulting distribution patterns. Our literature review, though relatively basic, indicates

that this issue might be widespread. Further, most species in a given area are rare [29], mean-

ing that researchers likely are fitting models for species with little data (though this depends on

the size of the sampling site relative to the species distribution), which will allow for priors to

be more influential. However, the true magnitude of the issue is unknown because the circum-

stances that allow a seemingly uninformative prior distribution to be in fact informative, can

vary, depending on the data. As illustrated in our empirical example, there are scenarios under

which the specification of the prior will have negligible impact on inference; however, there

also will be times when specifying a prior that does not impact inference will be difficult and

require iterative model fitting, whereby models are fit, and posteriors are plotted to assess

potential influence of the prior and this process is repeated until inference appears to be unim-

pacted by the prior. The potential implications of this issue for conservation and management-
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based studies are significant. We note that camera trapping and the use of occupancy models

has become common for studying rare or cryptic, threatened and endangered species [30]. In

these studies, both sample sizes and detection probabilities tend to be low, two aspects that can

lead to potential issues if informative priors are used. Even small overestimates in occupancy

for such species can have major implications for conservation and management action.

It is important to point out that the highlighted issue is not an inherent shortcoming of

Bayesian inference. As a rule, Bayesian analysis requires the specification of priors, and as

such, inference will be influenced to some degree by these priors. The models fit above are

behaving appropriately, and in the above we compared the posteriors to the MLE to illustrate

how the priors are influencing results. We do not suggest the MLE is a preferred approach

over Bayesian posterior inference, simply that any deviation between the two will be due to the

influence of the prior. Priors with large standard deviations or small precisions (inverse of the

variance) can strongly influence the posterior distribution of occupancy, both in terms of the

most probable value and the shape of the distribution. This is not a unique issue with the basic

occupancy model or just the occupancy parameter, but applies more generally to using a Nor-

mal prior distribution with a large standard deviation and a non-linear transformation (e.g.,

Logit, Probit). Importantly, such priors could be commonly used in Bayesian analyses of many

types of ecological data, including mark-recapture or survival data.

The issues outlined above bring up a larger philosophical issue of what type of inference

researchers want and why they choose to use Bayesian inference. In many cases, integrating

informative prior information with new data to update the belief about an ecological process is

not only justifiable but philosophically appealing [9]. Informative priors can be particularly

useful for the analysis of repeated studies when there is a desire to include information from

published research in current analyses, or to borrow strength across data sources to improve

estimate precision [31]. Additionally, informative priors can guard against spurious effects

[32,33] and erroneous estimation of large effects in underpowered studies [34], thus providing

more conservative inference than frequentist analyses. But also, more generally, informative

priors and their shrinkage properties provide a coherent form of model selection (i.e., statisti-

cal regularization [35]), which has predictive benefits [36]. However, based on our reading of

the literature, many ecologists want inference that is free from effects of the prior (e.g.,

[13,37]). If researchers truly want inference entirely free from any potential influence of the

prior, then they likely should look to different frameworks than Bayesian inference (e.g., using

likelihood based occupancy models, or for more complex hierarchical models, methods such

as data cloning [38]).

For researchers interested in fitting Bayesian occupancy or logistic regression models, we

suggest several options. First, following our findings and the recommendation from Hobbs

and Hooten [9], researchers that want to use Normal priors should use a variance near 2 (stan-

dard deviation approximately 1.4). This prior will often likely be weakly informative when

covariates are standardized by subtracting the mean and dividing by the standard deviation.

Further, we suggest always conducting a prior sensitivity analysis, where sequentially smaller

values of σ are used, and posterior medians and credible intervals are compared so that the

extent to which ecological inference is sensitive to prior specification is understood. Second,

the Logistic distribution is a good option to ensure priors are weakly informative, again when

there are no covariates or when covariates are standardized. It is important to recognize that

this prior is not uninformative, just that assuming a Uniform prior for ψ or p implies an infor-

mative prior for its logit [20]. As demonstrated, the Logistic prior can be a robust prior in

many situations and often improves MCMC mixing and convergence; an example JAGS

model is provided in the Supporting Information (S3 File). Third, set the prior based on the

model’s predictive capabilities and hence conduct continuous model selection. Gerber et al.
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[36] discusses the connection between the Normal prior and ridge regression and the connec-

tion between the Laplace prior and LASSO (least absolute selection and shrinkage operator),

which are common ways to conduct Bayesian model selection [39]. Fourth, follow the Bayes-

ian paradigm of sequential inferential updating by using previous knowledge to define the

prior distribution. In many (sub) fields of ecology there is considerable knowledge available

that can be used to define prior distributions. Lastly, we recommend researchers experiment

with prior specifications over different scenarios (i.e., ψ, p, n, number of sites, and σ) using an

easily accessible online tool that we provide for doing so (https://briangerber.shinyapps.io/

OccupancyPrior/). This tool allows researchers to investigate prior specifications with simu-

lated data and to upload and analyze their own empirical data.

We further note that recent publications in statistical ecology describing how to fit occu-

pancy models in a Bayesian framework provide some further suggestions for priors that should

reduce the concerns we raise here. Kéry and Royle [4], in worked examples suggest, for the

intercept, a uniform distribution between 0 and 1 that is then logit-transformed, though with

unscaled covariates this prior could lead to estimates of the intercept that are biased low. Fur-

ther, the Uniform distribution actually leads to an improper posterior, though the degree to

which this impacts inference is likely limited.

Beyond the above suggestions, practitioners should use particular care when detection is

low, few sites are surveyed, and occupancy is very low or very high. Generally, caution should

be applied when parameter uncertainty is likely to be large and near the probability bound-

aries, 0 and 1. In all cases, but particularly under these circumstances, we suggest first stan-

dardizing all independent variables (subtracting the mean and dividing by the standard

deviation) so that large magnitude coefficient estimates are avoided ([16]; scaling also speeds

convergence in many cases). We caution that surveying many sites is not a panacea for this

issue. In the dataset analyzed above, there were 4 visits to over 1,000 sites, a dataset that dwarfs

most used in occupancy analyses.

Conclusion

Complex computational and statistical methods will continue to become more attainable for

ecologists and other practitioners as computers become more advanced, and books are pub-

lished that provide walk-through examples and code to fit complicated models. While the

issue of uninformative priors becoming informative when transformed is well known to statis-

ticians [14,15], many of the previous descriptions of this problem are unapproachable for ecol-

ogists. We hope that this comment will spur other ecologists to take care to better understand

the models that they fit, and what their model outputs and results and the associated ecological

inference truly means. The tools are available for us to fit difficult and complex models, the

onus is thus on us to understand what they mean.
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S1 Fig. Depiction of transformation between logit and probability scale. For each value on

the x-axis, which are untransformed, the y-axis is the corresponding value that has been trans-

formed to the probability scale.

(PDF)

S2 Fig. Animation of relationship between normal prior distributions on logit and proba-

bility scales. Probability density on probability (top panel) and untransformed (bottom panel)

scale for normal priors with different values of σ2 (black boxes).

(PDF)
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S3 Fig. Supplemental results for gray jay analysis. Posterior distributions (solid lines) of α
from Bayesian occupancy models with different values for σ2 on the prior for α fit to gray jay

data. Maximum likelihood estimate is shown by the dashed vertical line. Panel A presents the

posteriors transformed to the probability scale, which equals the estimate of occupancy (ψ)

when all covariates are held to o (the mean in this example because covariates were centered).

Panels B–E presents the posteriors on the untransformed scale.

(PDF)

S1 Table. Supplemental results for analysis of avian occupancy. Value of variance (σ2) for

mean 0 Normal prios on α and β or prior used, and posterior medians for α, β for the mature

forest covariate, β for the distance (dist.) to edge covariate, and p for occupancy models fit to

data from gray jays (GRJA), Steller’s jays (STJA) and song sparrows (SOSP) in the Oregon

Coast Range.

(PDF)

S1 File. Example JAGS code to fit occupancy model with covariates.

(PDF)

S2 File. Example JAGS code to fit occupancy model with no covariates.

(PDF)

S3 File. Example JAGS code to fit occupancy model with covariates with a logistic distribu-

tion.

(PDF)
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