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Abstract Conservation and management agencies

require accurate and precise estimates of abundance when

considering the status of a species and the need for directed

actions. Due to the proliferation of remote sampling cam-

eras, there has been an increase in capture–recapture

studies that estimate the abundance of rare and/or elusive

species using closed capture–recapture estimators (C–R).

However, data from these studies often do not meet nec-

essary statistical assumptions. Common attributes of these

data are (1) infrequent detections, (2) a small number of

individuals detected, (3) long survey durations, and (4)

variability in detection among individuals. We believe

there is a need for guidance when analyzing this type of

sparse data. We highlight statistical limitations of closed

C–R estimators when data are sparse and suggest an

alternative approach over the conventional use of the

Jackknife estimator. Our approach aims to maximize the

probability individuals are detected at least once over the

entire sampling period, thus making the modeling of var-

iability in the detection process irrelevant, estimating

abundance accurately and precisely. We use simulations to

demonstrate when using the unconditional-likelihood M0

(constant detection probability) closed C–R estimator with

profile-likelihood confidence intervals provides reliable

results even when detection varies by individual. If each

individual in the population is detected on average of at

least 2.5 times, abundance estimates are accurate and

precise. When studies sample the same species at multiple

areas or at the same area over time, we suggest sharing

detection information across datasets to increase precision

when estimating abundance. The approach suggested here

should be useful for monitoring small populations of spe-

cies that are difficult to detect.

Keywords Camera traps � Capture–recapture �
Heterogeneous detection � Small population

Introduction

Management and conservation of wildlife requires reliable

information on the population status of species. Knowledge

of abundance is critical to assessing species status and

essential for ecological research (e.g., predator–prey

dynamics, species-habitat relationships). A common

approach for estimating abundance is to collect data on

detections of uniquely marked individuals that are

(re)captured over two or more sampling occasions (t;

usually days or weeks). Then closed capture–recapture (C–

R) estimators (Borchers et al. 2002) can be fit to the data to

estimate (1) the probability of detecting an individual on a

given occasion (p̂) and (2) abundance (N̂).
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The recent proliferation of remote sampling cameras

(camera-traps) has led to a rapid increase of C–R studies

estimating the abundance of medium to large carnivores

(O’Connell et al. 2010; Foster and Harmsen 2012). Data

common to these studies are often of low information

quantity in that few unique individuals are detected (Mt?1)

and then only a small number of times. Sparse data can

generally be recognized when the capture-history has many

zeroes. Characteristics of carnivore photographic C–R data

were summarized in Harmsen et al. (2011) and Foster and

Harmsen (2012). These data are typified by (1) infrequent

detections [ �̂p ¼ 0:17, SDðp̂Þ ¼ 0:16, rangeðp̂Þ ¼
0:02�0:79], (2) a small number of individuals detected

[ �Mtþ1 ¼ 12:6, SD(Mt?1) = 10.4, range(Mt?1) = 2–65]

due to naturally low densities, (3) long survey durations

(19–65 occasions), and (4) variability in detection among

individuals (heterogeneity). Closed C–R estimators were

developed to estimate abundance when animal populations

are too large for a complete census or when individuals are

difficult to detect. Total sampling duration is assumed to

occur over a small snapshot in time, for example B10 days.

As such, statistical assumptions of C–R estimators have not

often been considered in the literature when sampling

occasions are spread over long periods of time, which may

be appropriate for long-lived species (Karanth and Nichols

2002). It was further assumed that a reasonably large

number of individuals could be detected and that many, but

not all individuals would be detected several times (White

et al. 1982). Thus, the characteristics of common photo-

graphic-sampling data on rare carnivores do not match well

with the type of data abundance estimation has previously

considered.

We believe there is a need for guidance when estimating

the abundance of low density, long-lived species, where

heterogeneity is expected and sampling effort is protracted.

These conditions limit the utility of traditional C–R esti-

mators but these limitations are not clear in the literature.

Clarification is especially important because carnivore C–R

studies often target rare, poorly studied, and/or threatened

species (Jackson et al. 2006; Gerber et al. 2012). To ensure

appropriate conservation actions are implemented, esti-

mating abundance precisely and accurately is critical. The

uncertainty common to estimates from carnivore C–R data

(Foster and Harmsen 2012) may mask the true and possibly

critical status of a population, thus delaying conservation

actions. For large carnivores where the population size is

naturally low, an imprecise abundance estimate is espe-

cially problematic, as the uncertainty of only a few indi-

viduals is a significant proportion of the population.

Our objectives are four-fold. First, we discuss statistical

limitations relevant to estimating abundance with closed

C–R estimators when detection probability per occasion is

low and heterogeneous, sampling duration is long, and few

individuals are detected but they are likely to be a large

proportion of the total population (these elements are col-

lectively referred to below as ‘rare carnivore C–R data’).

We also comment on appropriate measures of precision.

Second, we suggest that when a population size is naturally

small (e.g., \20 animals), p is small, and t is long enough

such that most individuals in the population are detected,

using C–R data in a confirmatory census framework is

more appropriate than traditional modeling of the detection

process to estimate abundance. This is in contrast to the

usual approach of using the Jackknife estimator, which is

inappropriate with sparse data (Burnham and Overton

1978; Harmsen et al. 2011; B. D. Gerber, unpublished

data). We provide combinations of p and t useful in plan-

ning a C–R study to census a population. We then describe

minimum frequencies of individual detections that will

lead to informative estimates and confirm a complete or

near-complete census for a small population size using an

unconditional-likelihood closed C–R estimator with con-

stant detection probability (referred as M0 from here on;

White et al. 1982). Third, using Monte Carlo simulations

we demonstrate the reliability of estimating abundance

with the M0 and quantifying uncertainty with profile-like-

lihood confidence intervals (PLCI; Venzon and Moolgav-

kar 1988) when detection is heterogeneous. Fourth, we

discuss sharing information on p to estimate abundance at

multiple sampling areas or at the same area across different

sampling sessions. We emphasize that the suggestions

detailed below should only be applied to the specific type

of data we describe above.

Statistical limitations

For statistical estimation of any parameter, ideal estimators

are unbiased, precise, and produce nominal confidence

interval coverage at the (1 - a) level (a = probability of a

Type I error). Most commonly used C–R estimators of

abundance rely on likelihood theory to estimate parameters.

As such, they meet the characteristics of an ideal estimator,

but under asymptotic properties of consistency, normality,

and efficiency, which are generally not applicable when

sample size is small. Thus, commonly used estimators are

not guaranteed to ‘do the right thing’ given typical carnivore

photographic-sampling data. White et al. (1982) make this

point clear for C–R studies with a small number of sampling

occasions, ‘‘… if N \ 100 and p \ 0.3, a good capture–

recapture study probably cannot be done.’’

Precision and confidence interval coverage are espe-

cially problematic for sparse data. Log-based confidence

intervals are most often used for abundance estimates as
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they can be formulated to ensure that the lower bound is

CMt?1. However, log-based confidence intervals are

known to perform poorly (i.e., they do not include the true

parameter value as intended) with sparse data due to a

poorly estimated variance–covariance matrix and bias in

maximum-likelihood estimates (MLE; Hudson 1971;

Donaldson and Schnabel 1987). An additional problem

occurs when protracted sampling leads to a large propor-

tion of the population being detected, even though per

occasion p may be low. This situation constrains the lower

bound of the abundance estimation to be CMt?1 (except for

conditional-likelihood estimators that derive N̂ Huggins

1991), which in turn violates a condition required for large-

sample likelihood inference to perform well: that the true

parameter value is not on or near a boundary (e.g., it is not

near 0 or 1, or in this case Mt?1 and is therefore ‘‘uncon-

strained’’ of the parameter space). Under such constraints,

estimates of the variance–covariance matrix are often poor

(i.e., estimates of sampling variance may be 0 or exceed-

ingly large). The boundary issue is compounded when

sample size is small; a circumstance that often leads to

‘‘flat’’ likelihoods (as opposed to highly ‘‘peaked’’ likeli-

hoods with large sample size) which makes it difficult to

find a maximum and increases the chance that the

MLE(s) are on or near a boundary.

Aside from boundary issues, sampling a large portion of

the population can result in non-existent diagonal elements

of the Fisher information matrix which can lead to poor

estimates of sampling variation or preclude estimates

entirely. For the special case where Mt?1 = N̂, the second-

partial derivatives of the likelihood evaluated at the

MLE(s) are guaranteed to not exist due to lack of curvature

in the likelihood and thus there will be no standard estimate

of Var(N̂). Finally, when a large portion of the population

is detected, the estimated number of animals that were

never detected (f0) goes to zero. This is problematic when

using log-normal confidence intervals to characterize

uncertainty, as is the standard practice in Programs CAP-

TURE (Rexstad and Burnham 1991) and MARK (White

and Burnham 1999) because f0 appears in the denominator

of the confidence interval calculation. Thus, precise esti-

mation of N using asymptotic theory, when most of the

population is detected, or when sample size is small, is

either not possible or is unlikely to be at the (1 - a) level

using common interval estimators.

Characteristics of typical carnivore C–R data also make it

difficult to address the ubiquitous issue of heterogeneous

detection. Heterogeneity is often regarded as the most dom-

inant form of variation in p for a variety of reasons, including

effects of the sampling layout and its relationship to animal

movement, natural variability among age classes or between

sexes, and intrinsic-individual variation that may be

unmeasurable (Noyce et al. 2001; Harmsen et al. 2011; Royle

et al. 2013). Failing to account for existing heterogeneity

when many individuals in the population are not detected can

result in negatively biased estimates of abundance, but ade-

quately accounting for heterogeneity is difficult. With large

samples, one can make use of conditional-likelihood closed

models (Huggins 1991) and incorporate individual covariates

(e.g., sex) to model heterogeneity. Alternatively, one could

use mixture models that assume animals belong to 2 or more

arbitrary groups having distinct capture probabilities (Pled-

ger 2000). However, due to low information quantity in

sparse data, very few parameters may be estimable, thus

estimating multiple detection parameters to account for het-

erogeneity is often unrealistic. Despite the low quality of data,

many carnivore C–R studies follow recommendations of

foundational carnivore photographic-sampling work (Ka-

ranth and Nichols 1998, 2002) and estimate abundance using

the Jackknife estimator (Foster and Harmsen 2012). How-

ever, the Jackknife estimator also relies on asymptotic and

regularity conditions that are not met with small sample size

and such estimates, especially those of precision should not

be considered reliable (B. D. Gerber, unpublished data).

Furthermore, when most of the population is detected, which

may often be the case, as noted above, the Jackknife estimator

is known to overestimate abundance (Chao and Huggins

2005). For endangered species, this may be of a larger det-

riment than underestimation.

Recommendations

Design studies to be complete or near-complete

censuses

Due to the limitations associated with estimating abun-

dance using rare carnivore C–R data, we suggest it is more

appropriate to refocus the design of such studies to detect

all (or almost all) individuals in the population and provide

confidence of such. By doing so, we can reduce the number

of relevant parameters that need to be estimated to achieve

an accurate and precise abundance estimate. Given the long

duration of many carnivore C–R sampling, even low p can

result in detection of most animals in the population, albeit

with each animal likely observed a small number of times

relative to the total number of occasions. For example, if

p = 0.10 and sampling occurs for 30 occasions (e.g.,

30 days) the probability of detecting an individual at least

once over the total sampling period would be p* = 1 -

(1 - 0.10)30 = 0.958. As such, when t gets large, even

when p is very low, Mt?1 converges to N and p* can be

interpreted as the fraction of the population seen over the

entire sampling period. While sampling a large portion of
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the population causes estimation issues as described above,

the need for estimation is secondary for rare carnivore C–R

data as most individuals will be detected given a long

enough sample period.

Toward this end, we computed p* for plausible combina-

tions of low detection probability (p = 0.01 - 0.30) and

protracted sampling (t = 1–90; Fig. 1) and identify combi-

nations that result in a near-census (p* C 0.95), similar to

White et al. (1982). Given anticipated values for p, researchers

can assess the number of sampling occasions required for a

census. For example, if p = 0.05, 60 occasions would be

required to achieve a near-complete census. If pilot data are

available and indicate heterogeneity in detection, then we

recommend the use of the lowest possible or observed p̂ in

order to provide a conservative estimate of t required to obtain

a near census. Note that when p* is close to one, there is little

room for variation in detection due to heterogeneity, time, or

other factors and such modeling of this variation becomes

irrelevant in estimating abundance (see simulation below).

Although heterogeneity is expected in many carnivore C–R

datasets, it should not be assumed that a statistical estimator

that incorporates heterogeneity is inherently the most appro-

priate when the data are sparse. Below we demonstrate when a

simpler model that estimates fewer parameters than any het-

erogeneity model will perform well with sparse data.

Sample to attain minimum capture frequencies that will

lead to informative estimates

By ‘thinking like an estimator’ we can consider how many

individual detections (capture frequencies) are required to

obtain reliable estimates of abundance. Using simulation

we explored the relationship between capture frequencies

and precision as a means for practitioners to discern when a

study can be considered a near-census. Specifically, we

started with an initial scenario of t = 20, N = 10, 9 ani-

mals were detected once each, and 1 individual was never

detected. For subsequent simulations we added detections

such that for the second scenario 1 individual was caught

twice, others were caught once, and 1 individual was never

detected. For the third scenario 2 individuals were captured

twice, etc. We incremented the scenarios sequentially until

all animals were detected three times each except for the 1

individual that was never detected. We estimated abun-

dance for each of these nineteen scenarios by fitting M0 and

computing PLCI’s. We recommend profile-likelihood

confidence intervals as they have several advantages over

log-based confidence intervals, which are most often used.

First, PLCI do not rely on the assumption of asymptotic

normality and usually provide estimates close to nominal

levels even when sample size is small or estimation is on or

near a boundary (Bates and Watts 1980). Even in the

special case where Mt?1 = N̂, PLCI will still provide

meaningful confidence bounds. Second, PLCI guarantee

the lower bound will be greater than or equal to Mt?1.

Lastly, profiling the likelihood to estimate confidence

intervals directly uses the information in the data regarding

the parameter estimate(s) and is based on a relatively

robust distributional assumption of the asymptotic v2 dis-

tribution (Venzon and Moolgavkar 1988).

When each individual is only caught once, the point

estimate was unreliable and the upper confidence interval

Fig. 1 Combinations of

detection probability (p) and

sampling occasions (t), where

C95 % of the true population is

detected (black cells) or not

(grey cells)
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was positive infinity. However, when most individuals in the

population were captured two or more times, the point esti-

mate was very close to N and the upper confidence interval

was reasonable (Fig. 2). An average capture frequency of 2.5

or more resulted in a near-complete census. While we used

t = 20 for this simulation, the number of sampling occasions

is irrelevant to the general patterns in our results. If detection

probability is low, more than 20 sampling occasions will be

necessary to ensure most individuals are detected two or

more times; however, the accuracy and precision will be

similar to the patterns observed here.

Estimating abundance with heterogeneous detections

To investigate the reliability of using M0 and associated 95 %

PLCI under commonly observed heterogeneity in detection,

we simulated poorly informative data as presented in the

Electronic Supplementary Material (ESM). For all simula-

tions, true population size (N) was 10 and t = 10, 20, 30, 40,

50, and 60 occasions. We considered a generic form of het-

erogeneity where pi is a logit-normal distribution for the ith

individual using the combinations of l = 0.05, 0.1 and

r = 0.1 (Fig. S1 in ESM). Heterogeneity could be due to any

number of reasons, such as the spatial arrangement of the

trapping layout. Our specific choice of variability (r) in

detection was chosen to functionally capture p’s often

observed in carnivore studies (Harmsen et al. 2011). For each

individual i we randomly drew a single pi from the specified

distribution. We then created a t-occasion capture history for

individual i by inserting a ‘1’ or ‘0’ for each occasion

according to a Bernoulli process with probability pi. For each

combination of N and t, we simulated 1000 iterations and

investigated empirical distributions, bias, and precision of N̂.

We found that the bias was minimal for both l = 0.05 and

l = 0.1 when t C 20 (Fig. 3; empirical distributions are pre-

sented in Fig. S2 in ESM). However, precision was relatively

poor until t C 30 for l = 0.1 or t C 50 for l = 0.05. The

upper 95 % PLCI was often infinite at t = 10 for both detec-

tion distributions. In general, when expected p* was[0.6, this

approach estimated abundance accurately and with reasonable

precision. In other words, despite considerable heterogeneity

in detection, this simple model estimated abundance well. The

failure rate in estimating abundance for both scenarios was

B5 % after t = 30 (Fig. S3 in ESM). Models that require

estimation of additional parameters over M0 will have worse

precision, due to the limited information in the data.

Sharing information on p to estimate N

Sample sizes in many carnivore C–R studies are simply not

large enough to use closed C–R estimators as they were

Fig. 2 Abundance estimates where nine individuals are detected a

varying number of times using the M0 (constant detection probability)

unconditional-likelihood capture–recapture estimator and 95 % pro-

file likelihood confidence intervals. The true population size is 10.

The upper confidence interval is excessively large when the average

capture frequency is \1.4 and is not presented

a

b

Fig. 3 Expected abundance estimate (N̂) and 95 % profile likelihood

confidence intervals from the M0 (constant detection probability)

unconditional-likelihood capture–recapture estimator with simulated

heterogeneous capture–recapture data where the mean detection

probability was a l = 0.05 or b 0.1 and r = 0.1 over sampling

occasions of 10–60. The upper confidence limit was often infinite

when the sampling occasions were 10 and thus is not presented
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intended, modeling p to estimate N. This sentiment is stated

plainly by White et al. (1982), ‘‘experiments in which Mt?1

is on the order of 10 or 20 animals simply do not provide

enough information for any procedure to perform well’’.

However, in many studies, the target species is sampled at

more than one area or across multiple sessions at the same

area. While information regarding the detection process

may be sparse with one dataset, information can be shared

across datasets when estimating abundance for each area

(White 2005). This can be accomplished by specifying an

appropriate linear model for detection, as is possible in

several software packages (e.g., Program MARK). Care

must be taken to sample each area similarly such that

sharing information about detection is reasonable. An

information-theoretic approach (Burnham and Anderson

2002) can be used to evaluate whether sharing information

is supported by the data. One simulation found this to be a

useful approach when a population at a single sampling

area was small (N = 20; Conn et al. 2006). When sample

sizes of combined datasets are[20 individuals and sharing

detection information is considered reasonable a priori,

modeling the detection process in a shared framework is

appropriate. This approach has the potential to allow for

added model complexity to explain realistic variation in

detection, better identify appropriate models through model

selection, and likely produce more reliable abundance

estimates (Boulanger et al. 2002; Bowden et al. 2003;

White 2005). In other words, sharing information may

release an analysis from the bounds of poor data and allow

additional parameters to be estimated. Although, when

most animals are detected, sharing information may not be

particularly useful, as point estimates will be similar,

regardless of variation in detection.

Discussion

We emphasize again that the approach described here

should only be considered for the unique data typical of

photographic-sampling: (1) infrequent detections, (2) a

small number of individuals detected, (3) long survey

durations, and (4) variability in detection among individ-

uals. With better data, more sophisticated approaches are

warranted. Given the type of data described here, the goal

of carnivore C–R studies of low density populations should

be to make modeling the detection process irrelevant by

maximizing p* and detecting all or almost all of the pop-

ulation. Even with heterogeneous detection among indi-

viduals, as long as p* C 0.6, the M0 estimator with PLCIs

can be used to accurately estimate abundance and quantify

uncertainty. When a species is sampled multiple times at an

area or at multiple areas using the same methodology, we

encourage researchers to combine these data and determine

whether information about the detection process can be

shared.

M0 and PLCIs can be computed by many software

programs, including Program MARK (White and Burnham

1999), Program DENSITY (Efford et al. 2004), or through

the R programming language in packages RMark (Laake

2013) and secr (Efford 2011). Since PLCI’s require

parameters are in a likelihood framework, they cannot be

used with conditional-likelihood models or with the Jack-

knife estimator.

We recommend that C–R studies of very small popu-

lations consider capture frequencies as sampling proceeds

and provide such frequencies in publications, so readers

can (1) examine how often individuals are detected and

qualitatively assess the likelihood of a census, (2) deter-

mine how reliable estimates are likely to be, and (3) con-

sider the degree of heterogeneity and whether it is

important in the estimation of abundance. This will allow

reviewers to examine when a heterogeneity model may or

may not be useful.

Results shown here suggest that detecting most of the

population two or three times will provide minimal

expected bias and acceptable levels of precision that will

be useful to conservation and management agencies. A

common suggestion in photographic-sampling studies to

achieve appropriate frequencies of detection is to ensure

multiple camera sites are within each potential home range

of individuals within the study area (Karanth and Nichols

2002). However, this may be impractical due to restrictions

on the number of cameras available. An alternative design

is to move cameras during sampling to maximize the

chance of placing multiple cameras within each individ-

ual’s home range, thereby increasing an individual’s

probability of being detected at least once. A goal of every

study should be to ensure no individual in the population

has a zero probability of detection; one way to do this is to

move cameras. When animals have zero probability of

detection due to the sampling technique or layout, esti-

mating their numbers is equivalent to asking the question,

how many invisible animals are there? There is of course

no statistical solution to mitigate this bias.

To maximize p* and reduce potential bias of ‘‘invisible’’

individuals by moving cameras, one could use a block

design where a grid of cameras placed close together is

moved jointly to survey a larger area in total (Karanth and

Nichols 2002). Alternatively, each camera site could be

independently moved within the survey area after a given

criterion is met. For example, when a camera site detects

individuals at least twice within a given time frame (e.g.,

one month), it would be advantageous to move the site in

an attempt to increase the detection of others not observed

yet. After detecting the same individual three times, there

is little benefit in further detections. Lastly, if photographs
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cannot be reviewed and individuals identified within the

sampling period, camera sites could be deployed through-

out the study area for a set time period (e.g., one month)

and then all simultaneously redeployed within the same

area for the same amount of time.

In this paper, we have assumed that the closure

assumption of C–R models is met, such that there are no

geographic or demographic changes in the population

during sampling. While we have demonstrated the useful-

ness of protracted sampling to maximize p*, which makes

modeling detection irrelevant and thus helps overcome the

issues of small sample size to estimate abundance accu-

rately and precisely, we do not encourage researchers to do

so at the cost of violating this assumption. Because carni-

vores are typically long-lived (relative to the study period)

it has been common to assume populations are closed to

permanent demographic changes over a period of a month

or even more (Karanth and Nichols 2002). However, a

consequence of a long sampling duration is that highly

mobile animals may temporarily move on and off of the

study area. Minor temporary emigration (e.g., absence

from the study area on only a few occasions) over a long

sampling duration may be inconsequential (although it

does depress p and induce heterogeneity). However, con-

siderable movement in and out of the study area will

introduce bias to estimating abundance and/or necessitate a

redefinition of the population inference to the super pop-

ulation of animals that could have used the area over the

course of sampling (Kendall 1999).

Recently, much focus has been on the use of spatially-

explicit C–R models to estimate animal density and/or

abundance (Efford and Fewster 2013; Royle et al. 2013).

However, to do so requires estimation of more parameters

(i.e., a spatial component), which generally requires better

data than considered here and an additional set of

assumptions (Efford and Fewster 2013; Ivan et al. 2013).

Given the estimation challenges we’ve noted here with

sparse data, estimating additional parameters to obtain

density estimates is seemingly unrealistic without ancillary

information (e.g., more data or prior information). We

suggest that if the goal is to monitor a small population in a

relatively well defined area in which N is expected to be

less than 20 individuals and p is expected to be B0.1, a

confirmatory census approach as outlined here may be

reasonable. It’s interesting to note that simulations using

spatially-explicit models found that when the population

size is much larger than considered in this paper, the M0

model performs well (low bias and high precision) when

the detection process is assumed to follow a strict circular

bivariate Gaussian kernel and even when the sampling

occurs over patchy habitat, as long as the suitable habitat of

the target animal is appropriately covered (Efford and

Fewster 2013). In these simulations, the Jackknife esti-

mator was found to be unreliable.

Throughout we have focused on carnivore photo-

graphic-sampling studies, but our suggestions pertain more

generally when the population is very small and most

individuals in the population are detected. For instance,

when the sampling methodology is highly efficient, such as

when scat dogs are used to collect DNA (Wasser et al.

2004) most of the individuals may be detected and p* may

be near one. Also, estimating species richness may result in

sample sizes on the order of those discussed here (Walther

and Morand 1998).

Lastly, researchers should always keep ecology in mind

when estimating abundance. C–R estimators and the

mathematics that underlie them are ignorant of biology—

that piece will always be the responsibility of the

investigator.
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