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Abstract14

Resource selection is often studied by ecologists interested in the environmental drivers of15

animal space use and movement. These studies commonly produce spatial predictions, which16

are of considerable utility to resource managers making habitat and population management17

decisions. It is thus paramount that predictions from resource selection studies are accurate.18

We evaluated model building and fitting strategies for optimizing resource selection function19

predictions in a use-availability framework. We did so by simulating low- and high-intensity20

spatial sampling data that respectively predicted study area and movement-based resource21

selection. We compared one of the most commonly used forms of statistical regularization,22

Akaike’s Information Criterion (AIC), with the lesser used least absolute shrinkage and23

selection operator (LASSO). LASSO predictions were less variable and more accurate than24

AIC and were often best when considering additive and interacting variables. We explicitly25

demonstrate the predictive equivalence using the logistic and Poisson likelihoods and how it is26

lost when the available sample is too small. Regardless of modeling approach, interpreting the27

sign of coefficients as a measure of selection can be misleading when optimizing for prediction.28

Key words: AIC; habitat selection; LASSO; movement ecology; optimal; prediction;29

regularization; resource selection function; RSF; spatial ecology.30

Introduction31

An understanding of habitat selection is integral to the study of animal ecology and evolution.32

By tracking individual animal movements, we can understand the behavioral processes by33

which animals choose locations to maximize fitness (McLoughlin et al. 2010). This selection34

process subsequently provides important insights into population and community dynamics35

(Morris 2002). Advances in animal tracking data (e.g., global positioning system radio collars)36

have revolutionized our ability to assess habitat selection patterns. The most common method37

for examining habitat selection from animal tracking data is the resource selection function38

(RSF), fit in a use-availability framework (Manly et al. 2002; Hooten et al. 2017). Under this39
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framework, animal locations (the used sample) and their underlying environmental covariates40

(e.g., land cover type) are contrasted with random locations and their underlying41

environmental covariates that were considered available to the animal (the available sample).42

The available sample can be defined as the spatial region an animal could have accessed43

from each used location. In low-intensity tracking studies (e.g., a few locations per day), it is44

reasonable to assume highly mobile species (e.g., large mammal or bird) could traverse their45

home range or larger between used locations. The key word being could, rather than did or46

likely. These studies are common, as researchers favoring long tracking periods, perhaps for47

estimating demographic processes, can extend battery life of telemetry devices by acquiring48

fewer locations per day. In contrast, high-intensity tracking studies (e.g., 1 location/3049

minutes) acquire many temporally correlated used locations thereby limiting the available50

sample to the area along the path of used locations; the available sample may be estimated51

based on a movement process that accounts for this correlation (Johnson et al. 2008; Hooten52

et al. 2017). Importantly, how the available sample is defined dictates the inference on the53

scale of resource selection (Northrup et al. 2013; Hooten et al. 2017; Gerber et al. 2018).54

The RSF can be understood as a spatial point process (Hooten et al. 2017), in which the55

ith used location (µi; consisting of x-y coordinates in space) is a realization from a weighted56

probability distribution, µi ∼ [µi|β,θ], such that57

[µi|β,θ] ≡ g(x(µi,β))f(µi,θ)∫
g(x(µi,β))f(µi,θ)dµ

, (1)

where we interpret g(x(µi,β)) (i.e., the RSF) as how animals preferentially choose resources58

based on selection coefficients (β) and what is considered available to them (f(µi,θ)) based59

on availability coefficients (θ). Note, the denominator integrates over the spatial region that is60

available to the animal for all used locations and when the availability is uniform over this61

region, θ drops out of this equation (Hooten et al. 2017). Commonly, the RSF is defined using62

the exponential form as, g(x(µi,β)) ≡ ex
′(µi)β, but also sometimes using the logistic form63

(Lele and Keim 2006) as, g(x(µi,β)) ≡ ex
′(µi)β

1+ex
′(µi)β

. Resources chosen in greater or lesser64

proportion to their availability are considered selected and avoided, respectively. The main65
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difference is that the logistic form (also called the resource selection probability function)66

makes inference to the probability of selection and relies on strict parameteric assumptions67

that are not robust (Hastie and and Fithian 2013), while the exponential form makes inference68

to the relative density of used points, interpreted as the relative intensity of selection, which is69

proportional to the probability of selection. The latter is a relative intensity because the70

number of possible locations is unknown or realistically infinite under a continuous process,71

such that the intercept reflects the observed sample size (Warton and Sheperd 2010).72

Most researchers do not fit the weighted distribution directly (but see, Lele and Keim73

2006; Hooten et al. 2017; Gerber et al. 2018). Rather, it is more common to make inference on74

the exponential form of the RSF via approximation using generalized linear modeling (i.e.,75

logistic or Poisson regression) with familiar and available software (Northrup et al. 2013), such76

as via the glm() function in R. Both logistic and Poisson regression can provide equivalent77

inference on the selection coefficients (β) when certain conditions are met (Aarts et al. 2012;78

Fithian and Hastie 2013); namely, the number of grid cells in the Poisson regression and the79

number of locations in the available sample of the logistic regression needs to be very large80

(Northrup et al. 2013) to ensure the integral in the denominator of Eq. 1 is approximated well81

(Warton and Sheperd 2010). Furthermore, the logistic regression is improved when the82

available sample is infinitely weighted (Fithian and Hastie 2013), which in practice means83

weighting these data by a large number (e.g., 1000) and weighting the used sample by one.84

The objectives of resource selection studies are typically focused on evaluating ecological85

and conservation driven hypotheses (e.g., Chetkiewicz and Boyce 2009; McLoughlin et al.86

2010) to infer how spatial factors influence habitat selection. However, the practical utility of87

an RSF for many resource managers and conservationists is the spatially mapped predictions88

produced from these models (Morris et al. 2016), which can influence on the ground89

management decisions. Resource selection predictions are used for land-use planning (Coates90

et al. 2016), managing populations (Hebblewhite et al. 2011; Northrup et al. 2016), and more91

(Morris et al. 2016). Because RSF predictions are widely relied upon in conservation and92
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management decision making, it is of paramount importance to obtain accurate predictions.93

Resource selection studies typically adopt an explanatory modeling process (Shmueli94

2010; Gerber et al. 2015) aimed at inferential model building and estimation based on a95

relatively small set of hypotheses and associated covariates (Burnham and Anderson 2002).96

Specifically, models are often a limited combination of potential covariates (typically only97

assumed to affect selection in an additive manner) compared using Akaike’s Information98

Criterion (AIC; Boyce et al. 2002). Since many covariates are expected to have small effects or99

are collinear with other covariates, there are many potential variables that are never100

synthetically considered within a model comparison framework. Multicollinearity is a well101

known estimation issue in ecology (Graham 2003), which is prevalent in resource selection102

studies that often rely on remotely sensed data to produce many covariates from the same103

source products. Ecologists commonly ameliorate multicollinearity by excluding variables from104

a model or model set. Maintaining a small set of models fits into the hypothetico-deductive105

scientific framework, as it focuses on inference to specific and hypothesized factors driving106

resource selection. As such, variables are often not considered so as to maintain a single model107

or a small set of models, which is encouraged when using information criterion (Burnham and108

Anderson 2002). Prediction within a resource selection study is usually considered apart from109

model building and estimation to evaluate a final selected model (Boyce et al. 2002).110

We contend that viewing model fitting and selection in a statistical regularization111

framework has benefits when seeking to optimize resource selection models for prediction.112

Regularization is a statistical technique that seeks to optimize the generalizabiltiy of a model113

by trading off bias and variance (Bickel et al. 2006). Regularization encompasses most forms114

of model selection commonly used in ecology, which in resource selection studies is the use of115

information criterion and specifically, AIC (Boyce et al. 2002). Information criterion is used to116

evaluate discrete model sets and relies on asymptotic assumptions to justify predictive117

performance (Stone 1977). In contrast, alternative regularization techniques use a continuous118

model selection process from a global to an intercept-only model by constraining estimated119
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coefficients via a shrinkage parameter that can be optimally chosen via cross-validation, often120

leading to improved prediction performance (Hastie et al. 2009; Gerber et al. 2015).121

Continuous model selection can also be computationally more efficient than evaluating all122

possible subsets of discrete models, which can be a prohibitively large number of models.123

We highlight one of the more common continuous regularization techniques in applied124

statistics, the least absolute shrinkage and selection operator (LASSO; Tibshirani 1996).125

Notably, LASSO has variable selection properties and can remove effects of variables by126

constraining them to be zero, which gives the optimal model an additional amount of127

interpretability over other techniques (e.g., ridge regression; Hastie et al. 2009). Further,128

LASSO can accommodate the numerical issues of moderate multicollinearity, maintaining129

good predictive performance (Dormann et al. 2013), and thus does not necessitate removing130

partially collinear variables from models or model sets. Unless variables are completely131

correlated, there is potential information that could be useful to improve predictions; such132

information is lost when only one set of collinear variables is considered. Simply, LASSO is an133

integrated model-selection and estimation technique that leverages the power of134

cross-validation to identify a set of coefficients that optimizes predictive performance. We135

focus on LASSO because it identifies sparse models that may be useful for inference on136

resource selection, as well as optimal prediction.137

We can compare LASSO and AIC by their optimization routines, in which we estimate138

model parameters (e.g., β) by minimizing {model lack of fit + λ × model complexity}, where139

λ is a penalization or shrinkage factor. Model lack of fit for both is the deviance140

(−2× log(L(β))). While AIC defines λ = 2 based on theory, LASSO allows this value to be141

chosen, typically using cross-validation. Further, AIC considers model complexity as the142

number of parameters (q = 0) and includes the intercept (a = 1), while LASSO measures the143

number and magnitude of the absolute value of parameters (q = 1) and does not penalize the144

intercept (a = 2), such that the optimization argument for estimating K total parameters is145

arg minβ∈RK{−2× log(L(β)) + λ×
∑K

k=a|βk|q}. Note, q = 2 and a = 2 defines ridge146
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regression. Both LASSO and ridge have natural Bayesian interpretations (Hastie et al. 2009;147

Gerber et al. 2015). For more specifics, see Bickel et al. 2006 and Hastie et al. 2009.148

We considered two types of common animal telemetry data for predicting resource149

selection, low- and high-intensity individual sampling. Low-intensity sampling data represent150

individuals that are tracked infrequently (relative to their potential rate of movement), such151

that we assume no temporal correlation in sequential used locations, and inference to selection152

is over a large spatial region (i.e., home-range) that is considered available. High-intensity153

sampling data represent individuals tracked frequently where used locations are realizations154

from an animal movement process with temporal correlation between sequential used locations155

and the availability is defined by estimated step-lengths and turning angles. We focus on156

individual-level analyses as they are the fundamental unit of interest in resource selection157

studies and selection is expected to vary by individual (Montgomery et al. 2018). We compared158

LASSO and AIC using two model building strategies, only additive combinations of variables,159

and additive and pairwise interactions of all variables. Further, while statistical theory has160

clarified the equivalence between the logistic and Poisson approximation of the weighted161

distribution (Warton and Sheperd 2010; Fithian and Hastie 2013), there has yet to be a simple162

comparison of models with equivalent covariates fit with both likelihoods that is approachable163

for practitioners; as such, using the low-intensity data we compared all model building and164

fitting strategies using Poisson and logistic linear models. Last, we compared empirical results165

from individual movement-based RSF analyses optimized by AIC or LASSO, using location166

data from 44 mule deer (Odocoileus hemionus) in Colorado (Northrup et al. 2015).167

Materials and Methods168

Simulation169

We compared model building and fitting strategies in a simulation study where the true170

process that we seek to predict is known. Specifically, we simulated low- and high-intensity171

individual used locations using an intensity function that combines additive and pairwise172
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interactions of categorical (xi1, xi2, xi3) and continuous variables (xi4, xi5, xi6, xi7, xi8, xi9, xi10)173

with varying effect sizes (β ≡ [1, 2, 1, 1,−1, 0.5,−0.5, 0.5,−2, 0.5, 2,−2,−2, 2]′), as174

ex
′(µi)β ≡ exp(β0xi1 + β1xi2 + β2xi3 + β3xi4 + β4xi5 + β5xi6 + β6xi7 + β7xi8 + β8xi9

+ β9xi10 + β10(xi4 × xi7) + β11(xi8 × xi10) + β12(xi2 × xi7) + β13(xi3 × xi7)).
(2)

The categorical variable mimics land-cover type with three levels (e.g., forest, shrub and175

grassland), while the continuous variables mimic landscape features, such as elevation,176

ruggedness, etc. All spatial variables (x) were simulated as continuous Gaussian random fields177

(Appendix S1: Fig. S1). We simulated a second set of variables, w, that were considered as178

potential covariates hypothesized to influence resource selection, but were not directly related179

to the true RSF; w consisted of one categorical (three levels) and eight continuous variables180

(Appendix S1: Fig. S2). The continuous variables of w and x are minimally and maximally181

correlated (r) from -0.24 to 0.80 (Appendix S1: Fig. S3). As such, we are considering a182

common issue, in that many spatial variables are hypothesized and some or many of those are183

naturally or circumstantially correlated with each other.184

For the low-intensity sampling simulation, we used ex
′(µi)β to simulate 2000 data sets185

from an inhomogenous Poisson point process that ranged in the number of used locations from186

150 to 350,000, such that the proportion of the landscape used at least once ranged from187

approximately 0-100%. For the high-intensity sampling, we simulated used locations from an188

equivalent intensity function using a movement-based process following the approach outlined189

by Muff et al. 2019 (see Appendix S2). However, we redefined the habitat variables of x and190

w to make them more patchy and thus were appropriately encountered when simulating191

animal movements (Appendix S1: Fig. S4). We varied the number of total steps (used192

sample) by 100, 500, 1000, 2000, 5000, and 10000. At each step, we predicted 100 random193

locations as the available sample for each used location. For each step size, we simulated 200194

individual animal tracks; all simulations and model fitting was done in R (version 3.6.0); code195

can be found in Data S1.196
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Model Building and Fitting197

We fit models to each simulated data set using model building strategies that included either a198

model set with all combinations of additive covariates or all combinations of additive and199

pairwise interactions of covariates. Model fitting strategies included either selecting an200

optimal predictive model via AICc (AIC with small sample-size correction; Burnham and201

Anderson 2002) or LASSO. For each model building strategy, we considered all x and w202

covariates, except for x4, which we exclude to represent an important variable that was not203

hypothesized or could not be appropriately measured, and thus can not be included in a204

model set. We also fit each data set using the correctly specified model (i.e., exact set of205

covariates and their interactions used to simulate the data) as a benchmark for the best case206

for each strategy and data set. All continuous covariates were centered and standardized to a207

mean of zero and standard deviation of one. For modeling the low-intensity data using logistic208

regression, the available sample was the entire study area with each zero weighted by 1000.209

We demonstrated the predictive equivalence of the Poisson and logistic likelihoods by210

comparing predictions for all combinations of model building and fitting strategies and how it211

is lost by reducing the available sample using the logistic likelihood to 1000 random samples212

that are not weighted. For the high-intensity sampling data, we fit models using conditional213

logistic regression where each strata corresponds to a single used location that is matched with214

a set of corresponding available locations (Northrup et al. 2013). Mapped RSF predictions215

indicate the relative intensity of selection of a location conditional on all locations on the map216

being equally available to the animal.217

For strategies using AICc, we randomly removed collinear variables with a correlation ≥218

0.6 to determine the global model before evaluating all possible subsets via an automatic219

model selection routine in the R package ‘glmulti’ (Calcagno and Calcagno 2010) for logistic220

and Poisson analyses and in the package MuMIn for conditional logistic regression analyses.221

Predictions were model averaged using Akaike weights (Burnham and Anderson 2002). For222

strategies using LASSO, we did not remove collinear variables and regularized coefficients via223
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a complete set of shrinkage parameters (λ); we evaluated each shrinkage parameter via 10-fold224

cross-validation using the average deviance (-2 ×log(L(β))) of the left out data across all225

folds. Note, for conditional logistic regression the left out folds occurred by strata. Logistic226

and Poisson modeling with LASSO and cross-validation was done using the R package227

‘glmnet’ (Friedman et al. 2010) and conditional logistic modeling was done using ‘clogitL1’228

(Reid and Tibshirani 2014). See Appendix S2 for additional details on cross-validation.229

We evaluated RSF predictions against the true RSF in three ways. First, we computed230

Kendall’s rank correlation coefficient (τ), which measures the similarity of the ordering of231

continuous quantities by comparing concordant and discordant pairs. A high value of τ232

indicates that two continuous quantities have a similar ranking order. It does not guarantee233

that the relative difference between similarly ranked predictions and the true values are the234

same. Second, we computed the coefficient of determination (R2), which measures the235

proportion of the variance in the true values that is predictable from the RSF predictions.236

Third, we computed the mean absolute error (MAE) between the true and predicted RSF237

values after standardizing them to be between zero and one. A good model fitting and238

selection strategy should have a high τ and R2, a low MAE, and is consistent within a sample239

size, such that these measures vary little. We plot results by sample size when considering all240

RSF predictions together and for the low-intensity results we also binned the true RSF values241

into quartile groups of low to high selection (0-25%, 25-50%, 50-75%, 75-100%) and calculated242

τ , R2, and MAE with their corresponding RSF predictions. Binning predictions is commonly243

done when creating resource selection maps for managers (Morris et al. 2016) and clarifies244

which values are most difficult to predict. Lastly, we investigated the inferential reliability in245

interpreting estimated coefficients as selection and avoidance by evaluating the proportion of246

coefficients with the correct sign (+, 0, -) across simulations within each strategy.247

Empirical Case Study248

We used location data from 44 mule deer in the piceance basin of Colorado to fit249

movement-based RSF models optimized using AICc or LASSO. Used locations by individual250
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ranged from 240 to 330 and each used location was matched with 300 available locations in a251

temporally dynamic manner following the process outlined by Northrup et al. 2015. We252

specifically compared predictions using AICc with additive variables and LASSO with additive253

and pairwise interactions. We evaluated predictive differences by measuring τ , R2, and the254

mean standard deviation of the difference between predictions. Further, we evaluated255

within-sample predictive performance using the ratio in the deviance explained by the LASSO256

strategy relative to the AICc strategy; values >1 indicate improved prediction using LASSO.257

Lastly, we evaluated out of sample predictive performance by withholding 10% of each258

individuals data and fitting the remaining data with the LASSO and AICc strategies.259

Specifically, we measured the mean individual proportional change in deviance; values >1260

indicate improved prediction using LASSO.261

Results262

We found that model building (Additive or Additive & Interactions) and fitting strategies263

(LASSO or AICc) led to important differences in predicting resource selection for both low-264

and high-intensity modeling approaches (Figs. 1-3). First, preliminary investigations265

determined that AICc with all possible additive and pairwise interactions led to inconsistent266

results (Appendix S1: Figs. S5-S7) that were rarely more accurate than using LASSO with267

pairwise interactions and often less accurate than using AICc or LASSO with only additive268

combinations of variables. Thus, due to the computational issues of fitting >1 billion models269

per data set we removed this approach from further consideration. Across all strategies, we270

found that using LASSO always led to more accurate and consistent results (i.e., low variation271

in τ , R2 and MAE for a given sample size; Figs. 2, 3) than using AICc. The combination of272

randomly removing collinear variables, the instability of comparing many models using AICc,273

and the lack of explicit predictive evaluation via cross-validation led to the observed high274

variability in prediction agreement for similar sample sizes. Considering pairwise interactions275

with LASSO generally improved τ , R2, and MAE compared to only additive models, except at276

the smaller sample sizes. We also found that optimizing for prediction can lead to poor277
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inference on the selection and avoidance of resources when interpreting the sign of estimated278

coefficients when modeling low- or high-intensity sampling data (Appendix S1: Figs. S8-S9).279

We found that modeling low-intensity tracking data using a large weighted available280

sample for the logistic likelihood produced equivalent predictions as when using the Poisson281

likelihood (Fig. 2). The exception was a small, but consistent difference in predictions282

between likelihoods when using LASSO with additive and pairwise interactions. Predictive283

equivalence between likelihoods breaks down substantially for all model fitting strategies when284

the available sample is too small (Appendix S1: Figs. S10-S11). Notably, fitting the correct285

structural model with too small available sample reduced τ up to 0.23, R2 up to 0.22, and286

increased MAE up to 0.17.287

By binning the low-intensity tracking results, we found that low (0-25%) and high288

relative intensity of selection (75-100%) were universally easier to predict (Figs. A12-A14).289

Low-intensity of selection predictions using LASSO produced a τ ranging from 0.62 to 0.70 for290

additive only and 0.70 to 0.82 for additive and pairwise interactions. The corresponding R2
291

ranged from 0.68 to 0.78 for additive models and 0.85 to 0.90 for additive and interaction292

models, while the MAE ranged from 0.035 to 0.045 for additive models and 0.01 to 0.02 for293

additive and pairwise interactions. The medium relative intensity of selection categories294

(25-50% and 50-75%) were generally comparable to one another and much worse in terms of τ ,295

R2 and MAE relative to the high and low bins (Figs. A12-A14).296

Empirical deer RSF modeling indicated that predictions were very different when297

optimizing using AICc with additive variables and LASSO with additive and pairwise298

interactions (Fig. 1, Appendix S1: Figs. S15-S20). Across individuals, the mean τ , R2, and299

standard deviation of prediction difference was 0.56 (range, 0.36-0.70), 0.37 (range, 0.07-0.71),300

and 2.70 (range, 0.29-21.82), respectively. Comparing within-sample predictive performance,301

the LASSO always outperformed the AICc strategy by improving the deviance explained by a302

mean of 2.60 times (range, 1.59-5.40) across individuals. Comparing out-of-sample predictive303

performance, the LASSO generally outperformed the AICc strategy by improving the deviance304
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by a mean of 1.75 times (range, 0.78-6.15) across individuals.305

Discussion306

We found that common model building strategies for RSF analyses (models of additive307

variables compared using AIC) led to highly inconsistent and sub-optimal predictions. A308

substantial gain in predictive accuracy and reliability can be made by adopting a continuous309

statistical regularization framework that leverages the power of cross-validation and efficient310

and stable computational algorithms. LASSO improved predictions in terms of τ , R2, and311

mean absolute error across all sample sizes for modeling low- and high-intensity sample data.312

Further, we found that considering all pairwise-interactions with LASSO led to improved313

predictions, despite the increased estimation complexity. Perhaps an important but314

unsurprising finding was that predictions were best for the most strongly selected and avoided315

areas when maps were binned. This is critical, because many studies seek to identify habitat316

vs. non-habitat for species, which requires high resolution at the mid-ranges of the RSF,317

which might be difficult to achieve.318

Our results highlight the equivalence between the logistic and Poisson likelihoods in319

approximating the weighted distribution, which has been discussed elsewhere, but is perhaps320

not appreciated by practitioners. When using the logistic likelihood, care needs to be taken to321

use a large available sample (Northrup et al. 2013) that is weighted with a large number322

(Fithian and Hastie 2013) to ensure a proper approximation of the weighted distribution (Eqn.323

1). Otherwise, coefficients and predictions could be poor (example code is provided in Data324

S1). Our work also highlights an important finding of Warton and Shepard (2010), that325

because RSFs are point process models and can be fit in a generalized linear modeling326

framework, all the tools available to fitting such models can be used. This includes the efficient327

and robust algorithms that have been developed for continuous statistical regularization.328

There are many regularization techniques that could be highly useful in optimizing329

RSFs for predictive performance. One alternative to LASSO is ridge regression, which also330

shrinks coefficients continuously, can accommodate extreme multicollinearity, but does not331
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have variable selection properties (Hastie et al. 2009). Ridge shrinks larger coefficients more332

than smaller ones, while LASSO shrinks them uniformly. LASSO also tends to remove one of333

two highly correlated variables, while ridge will shrink their coefficients towards one another.334

Which performs better depends on the number of variables considered, the true distribution of335

small and large effects, and whether there are many hypothesized variables that have no effect336

(Hastie et al. 2009). The generalization of ridge and LASSO is the elastic net (Zou and Hastie.337

2005). Elastic net can accommodate extreme multicollinearity and lead to sparse interpretable338

models; however, for our context we found LASSO and elastic net to perform equivalently339

(Appendix S2). Flexible cross-validation along with ridge, LASSO, elastic net, and more are340

available in the R language and can be implemented using the ’glmnet’ package (Friedman et341

al. 2010); example code is provided for each in Data S1. For researchers that want to relax342

assumptions of linearity, generalized additive models (Hastie et al. 2009) or boosted regression343

trees (Elith et al. 2008) are an option.344

It is important to recognize the potential inferential costs of an optimal predictive345

modeling approach with correlated variables. We found among all simulation scenarios that346

the sign of estimated coefficients are not reliable in terms of evaluating whether a resource is347

being selected or avoided. There is a necessary trade-off between prediction and348

understanding when modeling, such that a single modeling approach will unlikely be optimal349

for both purposes. When use of spatial predictions from RSFs for conservation and350

management decision making is a priority, regularization techniques that optimize predictions351

using cross-validation should be employed.352
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Figure 1. The true RSF and exemplars of RSF predictions by varying the model building and444

fitting strategies for simulated low-intensity (a) and high-intensity (b) sampling data, and445

comparative predictions from three mule deer (row) from the piceenace basin in Colorado,446

USA with AIC predictions in column one and LASSO predictions in column two (c).447

448

Figure 2. Measures of agreement between the true RSF and predictions from modeling449

low-intensity sampling data using the logistic (�) and Poisson likelihood (©) by sample size450

across model building and fitting strategies. Agreement is measured by Kendall’s τ , R2, and451

mean absolute error. For logistic models, the available sample were all locations of the452

landscape weighted by 1000. Note that the y-axis is different for the bottom figure and Prop453

(%) is the proportion of the landscape used at least once.454

455

Figure 3. Measures of agreement between the true RSF and predictions from modeling456

high-intensity sampling data using conditional logistic regression by sample size across model457

building and fitting strategies. Agreement is measured by Kendall’s τ , R2, and mean absolute458

error. The y-axis labels: CM is ‘Correct Model’, ‘L-Add’ is LASSO with additive variables,459

‘L-Int’ is LASSO with additive and pairwise interactions, and ‘AIC-Add’ is Akaike’s460

Information Criterion (with a correction for small sample size) with additive variables.461
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