RAD2 Design Documentation

Sponsor: Schmidt Ocean Institute Collaborating Institutions: University of Rhode Island, Monterey Bay Aquarium Research Institute, Harvard University, CUNY/Baruch College

Brennan Phillips, Asst. Professor Ocean Engineering University of Rhode Island

Testing & Assembly

Soft Edges

Tissue Sampler

Motor: Maxon MT20

https://www.maxongroup.com/medias/sys_master/root/ 8849641865246/20201102-Specification-MT20.pdf

Integration on ROV SuBastian

	8		7		6	
)	 NOTES: 1. MATERIAL: SEE 2. ENSURE O-RINC OF DOW-CORN 3. SAE DUAL-SEAL BACK-FILLING H BUNA-N, 90a D 4. DEPTH RATING: 7,000 PSI (105% FACILITY. 5. ITEM #16 AVAII WITH COATING PREVENT GALLI STAINLESS-STEEI 	BOM GLAND SURFACES ARE NING #4 SILICONE GREA VENT PLUG (ITEM #4) US HOUSING WITH DRY GAS UROMETER AND 2-015 B 4,500 METERS, SEAWAT OF RATED DEPTH) IN A (ABLE FROM ALLIED TITA OF MARINE GREASE (e. NG. FOR SHORT-TERM E - 316 HARDEWARE IS AC	E CLEAN. APPLY LIGHT COA SE TO O-RINGS. SED FOR APPLYING VACUU . FITTING USES O-RINGS: 3- UNA-N, 70a DUROMETER. ER. PRESSURE-TEST HOUSING CERTIFIED HYDROSTATIC TES NIUM. ASSEMBLE HARDWA g. AQUASHIELD) OR ANTISI DEPLOYMENT IN SEAWATER, CEPTABLE.	ATING IM AND -904 G TO ST , RE IEZE TO ,		
->> ->	9 1 10 1 8 2 7 1					
Ą			4,500M DEI ENGRAVED REAR ENDO	PTH RATING ON CAP	ASO MASW RATED GREGORY DESIGNS, I	

7

6

D

С

В

А

			SH 1 OF 1]	_
	ZONE	REV	REVISION HISTORY DESCRIPTION	DATE APPROVED	
		A O O O O O O O O O O O O O O O O O O O	RNS, LLC		D
					С
	ITEM NO. 1 2 3	PART NUMBER GD-BTP0026-SURP HOUSING TUBEREV- GD-BTP0028SUPR ENDCAP-REAR REV-A GD-BTP-0027SUPR ENDCAP-FRONT	DESCRIPTION SUPR HOUSING TUBE SUPR HOUSING ENDCAP-REAR SUPR HOUSING ENDCAP-FRONT	QTY. 1 1 1	
<u>२</u>	4	REV-A GD-SILIXA0024SAE	DUAL SEAL VENT PLUG	1	В
	5	SUBCONN DBH13M	SUBCONN ETHERNET 13-PIN	1	
			MALE BULKHEAD SUBCONN MICRO-CIRCULAR 3-	1	
	7		PIN MALE BULKHEAD SUBCONN MICRO-CIRCULAR 6-	1	
			PIN FEMALE BULKHEAD		
	<u></u>		PIN FEMALE BULKHEAD	- 2	
	9	PURCONN WCBH8W			
	10	SUBCONN MCBH8F	PIN FEMALE BULKHEAD	1	
	11	SUBCONN MCBH10F	SUBCONN MICRO-CIRCULAR 10-PIN FEMALE BULKHEAD	2	
	12	SUBCONN DBH13F	SUBCONN ETHERNET 13-PIN FEMALE BULKHEAD	1	
	13	SUBCONN DLSA-F	SUBCONN LOCKING SLEEVE - FEMALE	3	:YREV
	14	SUBCONN DLSA-M	SUBCONN LOCKING SLEEVE - MALE	1	VG ASS G ASSY
2>	15	O-RING2-157	O-RING, 2-157, BUNA-N, 70A DUROMFTFR	4	ME HOUSIN
5	16	ALLIED TITANIUM P/N 16610	SOCKET HEAD CAP SCREW, 8-32 x 5/8", TITANIUM GRADE 5	12	JTER FILE NA 0025-SUPR -0025-SUPR
		T.GREGORY DRAWING T.GREGORY	2020-03 THIS INFORMATION IS NOT TO BE DUPLICATED OR DISTRIBUTED WITHOUT THE WRITTEN CONSENT OF GREGORY DESIGNS, LLC	GORY DESIGNS LLC	COMPL GD-BTF GD-BTP
		CHECKED D.CASAGRAN	IDE 2020-03-30 DIMENSIONS ARE IN INCHES. TOI FRANCES:	JPR HOUSING ASSY	9
			PROJECTION FRACTIONAL ±1/64 ANGULAR: MACH ±0.5* ONE PLACE DECIMAL ±0.1 THREE PLACE DECIMAL ±0.01 THREE PLACE DECIMAL ±0.05 SIZE D	CD-BTP0025	DRAWI
				1	

SOI/RAD2 Control Bottle Specs

BULKHEADS

Main Telemetry (Power, ethernet) to ROV

- DBH13M (1/2-20)
- MCBH3M (7/16-20)

SuPR Sampler (provided by McLane, SS)

- MCHB10F (1/2-20) "Master Valve"
- MCBH10F (1/2-20) " 14-port valve"
- MCBH3F (7/16-20) "14-port sensor"
- MCBH3F (7/16-20) "Flow Meter"
- MCBH8M (7/16-20) "Pump"

Maxon thruster ("Tissue Sampler")

• MCBH8F (7/16-20)

2G Engineering Rotary Actuator

• MCB6F (7/16-20)

DEEPi Cameras

• DBH13F (1/2-20)

TOTAL:

4x 1/2-20 holes

6x 7/16-20 holes

Controller: Raspberry Pi 4 (?)

- Ethernet in from ROV
- RS-232 to SuPR
- RS-232 to 2G Eng. Rotary Actuator

SuPR Sampler (provided by McLane)

- 100mm diameter, 240 mm length + some extra room for connectors
- 24VDC, current requirement TBD
- RS-232 comms

Maxon thruster controller "ESCON 70/10"

- 125 x 78.5 x 27mm + connectors
- 24VDC @ 6A max

2G Engineering Rotary Actuator

- no internal components
- Just RS-232, 24VDC, stall (max) current is 5A

INTERNAL COMPONENTS

1. Warnings and hazards

High Voltage - When powered by AC, voltages up to 350V DC are present in the bottle. This voltage dissipates quickly after shutdown, and everything inside the bottle is touch-safe after 60 seconds. When powered by 24V DC, there are no high voltages.

Pinch hazard - The RAD2 actuator moves quickly and has many pinch points where panels and hinges come together. Keep fingers clear of moving parts when on deck.

Tissue sampler blades - The blades can cause significant injury. Keep fingers far away whenever the system is powered on.

Overheating - The AC/DC converter can overheat when run on deck for extended periods, depending on air temperature. If the outside of the bottle is warm to the touch, shut down or cool with water. This is not a concern when under water, or when not using the AC/DC converter.

2. Power and Communications

The RAD2 sampler has flexible power and communications options. The system runs at 24V DC, but contains an optional wide input AC/DC converter.

Power

AC: 87-264V single or split phase, 500w. For example fuse at 5A for 120v, 2.5A for 250v. DC: 24V, 10A. Lower current configurations are possible with reduced performance.

Communications

The RAD2 bottle contains a number of serial devices connected to a Raspberry Pi. This Pi talks to a topside computer over a 10/100/1000 Mbps Ethernet connection. For SuPR-only operation, this can be bypassed and instead use a RS232 connection at 9600 baud. **Only one of these connections is required.**

3. Connector Pinouts

HOTEL - SubConn DBH13M

- 1: Power GND
- 2: Serial GND (isolated from power GND in bottle, can be connected on vehicle side)
- 3: 24v+
- 4-11: GigE Ethernet per DHB13M spec
- 12: RS232 Rx (device receive, connect to vehicle Tx)
- 13: RS232 Tx (device transmit, connect to vehicle Rx)

AC IN - SubConn MCBH3M

1: Hot (or L1)

- 2: Neutral (or L2)
- 3: Chassis GND (optional)

Rotary Actuator - SubConn MCBH6M

- 1: RS232 RX (device receive)
- 2: RS232 TX (device transmit)
- 3: N/C
- 4: 24v+
- 5: GND (power and RS232)
- 6: N/C

Maxon Thruster - SubConn MCBH8F

- 1: Phase A
- 2: Phase B
- 3: Phase C
- 4: Hall GND
- 5: Hall PWR
- 6: Hall A
- 7: Hall B
- 8: Hall C

SuPR MPV - SubConn MCBH10F

- 1: Phase A+
- 2: Phase B+
- 3: Phase A-
- 4: Phase B-
- 5: Sensor GND
- 6: PWM
- 7: Sensor PWR
- 8: SDA
- 9: SDL
- 10: N/C

SuPR SV - SubConn MCBH10F

- 1: Phase A+
- 2: Phase B+
- 3: Phase A-
- 4: Phase B-
- 5: Sensor GND
- 6: PWM
- 7: Sensor PWR
- 8: SDA
- 9: SCL
- 10: N/C

SuPR Pump - SubConn MCBH8M

- 1: Phase A
- 2: Phase B
- 3: Phase C
- 4: Hall GND
- 5: Hall PWR
- 6: Hall B
- 7: Hall C
- 8: Hall A

SuPR Home - SubConn MCBH3F

- 1: 5v
- 2: Signal
- 3: GND

SuPR Flow - SubConn MCBH3F

- 1: 5v
- 2: Signal
- 3: GND

4. Software

Installation

Install ROS Noetic: <u>http://wiki.ros.org/noetic/Installation/Ubuntu</u> Clone rad2 repository into ~/catkin_ws/src: git clone <u>https://bitbucket.org/davecasa/rad2.git</u> Build in ~/catkin_ws: catkin_make

Running Software

Connect to remote computer: ssh pi@rad2, password 'rad2' roslaunch rad2 rad2.launch

On topside computer: roslaunch rad2 topside.launch

Operation

The SuPR GUI is a simple implementation of the commands specified in the SuPR manual. Each button maps directly to a serial command. Responses from the SuPR are displayed in the terminal, and include calibrated pump volume and other useful information.

					S	uPR			- +	8	
	Poll Status										
	SVPort 1 (RAD2) SVP		ort 2 (Pi	reservat	tive)						
	MPV Step 1500			MPV	Home						
Bypass 1 Bypass 2		2 Byp	ass 3	Вура	ass 4	Bypass 5	Bypass 6	Bypass 7			
Sample 1		Sample	2 Sam	Sample 3		ple 4	Sample 5	Sample 6 Sam		ple 7	
Bypass 8		Bypass 9	9 Bypa	Bypass 10		ss 11	Bypass 12	Bypass 13	Вура	Bypass 14	
Sample 8		Sample	9 Sam	Sample 10		ole 11	Sample 12	Sample 13	Sample 14		
Pump Time: 30											
	Pump										

The RAD2 GUI has controls for the rotary actuator and tissue sampler.

The EMERGENCY STOP button disables both systems, which in the case of the actuator will cause it to go limp.

The top slider and buttons control the tissue sampler.

The default direction is blades forward, ie. cut. Reverse (button depressed) is useful for clearing debris from the blades.

Speed and current feedback can indicate when the blades are jammed.

The lower slider controls the rotary actuator position. Left is fully opened, and right is fully closed. Maximum tested speed is 30 RPM, which closes the RAD2 from fully opened in about 2 seconds. Minimum and maximum position may need to be adjusted depending on the rotation when the arms were installed. Use the reported Actual Position to verify.

	RA	D2		-	+	8		
EMERGENCY STOP								
Speed:RP	N		Curr	ent:	A			
Direction	Direction			nable	2			
Target:De	Target:Deg			Actual:Deg				
Enable	Enable		5	Send				
Rot Speed (RPM)		5			_			
Min Pos	Min Pos							
Max Pos	1260							
Set Speed and L								

5. Schematics and Electronic Components

Schematics for RAD2 custom PCBs are below.

Raspberry Pi and Analog Maxon Thruster Control

USB-Serial and RS232 Converter

COOPER PERKINS

6 Unique Parts

• F1

6 Unique Parts

- F1
- F2 Laevus

6 Unique Parts

- F1
- F2 Laevus
- F2 Dexter

6 Unique Parts

- F1
- F2 Laevus
- F2 Dexter
- F3

6 Unique Parts

- F1
- F2 Laevus
- F2 Dexter
- **F3**
- F1 Ostium

6 Unique Parts

- F1
- F2 Laevus
- F2 Dexter
- **F3**
- F1 Ostium
- F2/F3 Periostium

6 Unique Parts

- F1
- F2 Laevus
- F2 Dexter
- **F3**
- F1 Ostium
- F2/F3 Periostium

8 Unique Parts

• A1

6 Unique Parts

- F1
- F2 Laevus
- F2 Dexter
- **F3**
- F1 Ostium
- F2/F3 Periostium

- A1
- A2/A3 Origin

6 Unique Parts

- F1
- F2 Laevus
- F2 Dexter
- **F3**
- F1 Ostium
- F2/F3 Periostium

- A1
- A2/A3 Origin
- A2/A3

6 Unique Parts

- F1
- F2 Laevus
- F2 Dexter
- F3
- F1 Ostium
- F2/F3 Periostium

- A1
- A2/A3 Origin
- A2/A3
- A4 Laevus

6 Unique Parts

- F1
- F2 Laevus
- F2 Dexter
- F3
- F1 Ostium
- F2/F3 Periostium

- A1
- A2/A3 Origin
- A2/A3 •
- A4 Laevus
- A4 Dexter

6 Unique Parts

- F1
- F2 Laevus
- F2 Dexter
- F3
- F1 Ostium
- F2/F3 Periostium

- A1
- A2/A3 Origin
- A2/A3
- A4 Laevus
- A4 Dexter
- A5

6 Unique Parts

- F1
- F2 Laevus
- F2 Dexter
- F3
- F1 Ostium
- F2/F3 Periostium

- A1
- A2/A3 Origin
- A2/A3
- A4 Laevus
- A4 Dexter
- A5
- A1 Periostium

6 Unique Parts

- F1
- F2 Laevus
- F2 Dexter
- F3
- F1 Ostium
- F2/F3 Periostium

- A1
- A2/A3 Origin
- A2/A3
- A4 Laevus
- A4 Dexter
- A5
- A1 Periostium
- A4/A5 Ostium

RAD2 Made Of Two Main Sub-assemblies

Arm Linkage Assembly

Central Hub Linkage Assembly

Central Hub Linkage Assembly

Central hub linkage is highlighted in blue

Central Hub Consist of 3 Sub-assemblies

Main Housing Assembly

A1 Link Assembly

F1 Link Assembly

Central Hub Assembly

Main Housing Assembly

Central Hub Consist of 3 Sub-assemblies

Main Housing Assembly

A1 Link Assembly

F1 Link Assembly

F1 Capture Plate Needs Axial Limit Surface

Arm Linkage Assembly

Arm linkage is highlighted in blue

Folding Linkage

F2 Dexter Link

Assembly Linkage Hardware

F2/F3 Ostium & A4/A5 Periostium Linkage Assembly

F2/F3 Ostium & A4/A5 Periostium Linkage Assembly

Camera Attachment

Gasket mounting locations

