Comparison of Coastal and Regional Ocean Community Model (CROCO) and NCAR-LES in non-hydrostatic simulations

Xiaoyu Fan¹, Baylor Fox-Kemper¹, Nobuhiro Suzuki², Qing Li³, Patrick Marchesiello⁴, Francis Auclair⁵, Peter Sullivan⁶ & Paul Hall¹

¹Brown University
²Institute of Coastal Ocean Dynamics Helmholtz-Zentrum Hereon
³The Hong Kong University of Science and Technology (Guangzhou)
⁴Institute of Research for Development, Marseille, France
⁵Laboratoire d'Aerologie, Toulouse, France
⁶National Center for Atmospheric Research

Coastal and Regional Ocean Community model (CROCO) and NCAR Large-eddy simulations (NCAR-LES) are compared, with a focus on their accuracy and efficiency. Various combinations of surface wind and surface cooling are used to measure the accuracy; while the computer time of model running is recorded to evaluate the efficiency. Different settings of time-stepping are adjusted according to the capacity of the computational platform. Ocean State Center for Advanced Resources (Oscar) of Brown University and Cheyenne, a high-performance computer built for NCAR by SGI are both used. We will present the comparison of accuracy and efficiency in non-hydrostatic simulations of these two systems.