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JULIA M. RIBEIRO,! ROBERT J. STERN,! FERNANDO MARTINEZ,? OSAMU ISHIZUKA,*!
SUSAN G. MERLE,' KATHERINE KELLEY,” ELIZABETH Y. ANTHONY,® MINGHUA REN,®
YASUHIKO OHARA,"® MARK REAGAN,® GUILLAUME GIRARD,® AND SHERMAN BLOOMER’

'Geosciences Department, University of Texas at Dallas, 800 W. Campbell Rd. Richardson, Texas 75083-0688,
USA (email: juliaribeiro@utdallas.edu), 2Hawai’i Institute of Geophysics and Planetology, SOEST, University of
Hawai’i at Manoa, 680 East-West Rd, POST 602, Honolulu, Hawaii 96822 USA, *AIST, Central 7, Geological
Survey of Japan, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan, “NOAA Vents Program, Oregon State
University, 2115 SE Oregon State University Dy, Newport, Oregon 97365, USA, *Graduate School of
Oceanography, University of Rhode Island, Narragansett Bay Campus, Narragansett, Rhode Island 02882, USA,
SUniversity of Texas at El Paso, Department of Geological Sciences, 500 West University Avenue, El Paso, Texas
79968, USA, "Hydrographic and Oceanographic Department of Japan, 2-5-18 Aomi, Koto-ku, Tokyo 135-0064,
Japan, 2Department of Geosciences, University of Iowa, 10 Glendale Court, Iowa City, Towa 52242, USA,
%Geosciences Department, Oregon State University, 128 Kidder Hall, Corvallis, Oregon 97331, USA, and “Japan
Agency for Marine-Earth Science and Technology, Natsushima 2-15, Yokosuka 237-0061, Japan

Abstract The southernmost Mariana forearc stretched to accommodate opening of the
Mariana Trough backarc basin in late Neogene time, erupting basalts at 3.7-2.7 Ma that
are now exposed in the Southeast Mariana Forearc Rift (SEMFR). Today, SEMFR is a
broad zone of extension that formed on hydrated, forearc lithosphere and overlies the
shallow subducting slab (slab depth = 30-50 km). It comprises NW-SE trending subpar-
allel deeps, 3-16 km wide, that can be traced = ~30 km from the trench almost to the
backarc spreading center, the Malaguana-Gadao Ridge (MGR). While forearcs are usually
underlain by serpentinized harzburgites too cold to melt, SEMFR crust is mostly com-
posed of Pliocene, low-K basaltic to basaltic andesite lavas that are compositionally similar
to arc lavas and backarc basin (BAB) lavas, and thus defines a forearc region that recently
witnessed abundant igneous activity in the form of seafloor spreading. SEMFR igneous
rocks have low Nag, Tis, and Fes, consistent with extensive melting, at ~23 * 6.6 km depth
and 1239 + 40°C, by adiabatic decompression of depleted asthenospheric mantle metaso-
matized by slab-derived fluids. Stretching of pre-existing forearc lithosphere allowed BAB-
like mantle to flow along the SEMFR and melt, forming new oceanic crust. Melts
interacted with pre-existing foreare lithosphere during ascent. The SEMFR is no longer
magmatically active and post-magmatic tectonic activity dominates the rift.
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INTRODUCTION

Forearcs are cold regions above subduction zones
that lie between the trench and the magmatic arc.
They can be accretionary or non-accretionary
depending on the amount of sediment carried
into the trench (Lallemand 2001; Stern 2002).
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Non-accretionary forearcs, such as that of the
Marianas, are of special interest as they preserve a
record of the first lavas that erupted in association
with subduction initiation (Stern & Bloomer 1992;
Reagan et al. 2010; Ishizuka et al. 2011). Forearc
lithosphere is underlain by the cold, subducting
plate that releases its hydrous fluids into the
upper mantle wedge, resulting in exceptionally
cold (<400°C; Hulme et al. 2010) and serpentinized
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mantle lithosphere that rarely melts (Van Keken
et al. 2002; Hyndman & Peacock 2003; Wada et al.
2011). The occurrence of cold, serpentinized
forearc mantle beneath the Mariana forearc is
demonstrated by eruption of serpentinite mud vol-
canoes (Mottl et al. 2004; Savov et al. 2005, 2007;
Wheat et al. 2008; Hulme et al. 2010) and serpen-
tinized peridotite outerops on the inner trench
slope (Bloomer & Hawkins 1983; Ohara & Ishii
1998). Serpentinized mantle beneath the forearc
has also been imaged by geophysical surveys
(Tibi et al. 2008). Ultramafic rocks from the upper
mantle wedge found as clasts in mud volcanoes
and on the inner trench slope mostly consist
of harzburgite, residues of mantle melting
(Parkinson & Pearce 1998; Savov et al. 2005, 2007)
that are chemically distinct from the more fertile,
backarc basin (BAB) peridotites (Ohara et al.
2002). Such highly depleted, forearc mantle can
melt in association with early-are voleanism to gen-
erate boninites (Stern & Bloomer 1992; Reagan
et al. 2010). Decompression melting of more fertile
mantle to form tholeiitic basalts near the trench
also has been documented during the first stage of
subduction initiation. These lavas have mid ocean
ridge basalt (MORB)-like compositions and have
been termed forearc basalts (FABs) reflecting
their subduction-related origin and location in
modern forearcs (Reagan et al. 2010).

In the Izu-Bonin—-Mariana (IBM) intraoceanic
system, most forearc lavas are Eocene-Oligocene
in age, and younger forearc lavas are unusual
(Stern & Bloomer 1992; Reagan et al. 2010;
Ishizuka et al. 2011). Here, we document the first
record of Pliocene forearc lavas from the southern-
most Mariana convergent margin, indicating that
the mantle can melt beneath forearcs long after
subduction initiation. These low-K lavas are tholei-
itic basalts generated from BAB-like asthenos-
pheric mantle during seafloor spreading in the
Southeast Mariana Forearc Rift (SEMFR), which
is a broad zone of deformation (~40 km wide and
~60 km long), extending from the trench to the
Fina-Nagu arc Volecanic Chain (FNVC). The
SEMFR today overlies a shallow subducting
Pacific slab (=50-100 km deep; Becker 2005).

This paper presents a first report on the geology
and tectonic evolution of the SEMFR. We present
bathymetry, summarize the results of bottom
traverses, and provide petrologic, major element
geochemical data, and “’Ar/*’Ar ages of igneous
rocks sampled during two JAMSTEC research
cruises. These data are used to characterize
SEMFR lavas, to address when, where, and how
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SEMFR lavas were generated, and to determine
sources of the magmas, and conditions of melting.
Addressing these issues helps us better under-
stand how such melts were produced in a cold
forearc, and allows us to develop a geodynamic
model to constrain the geodynamic evolution of the
S. Mariana forearc. In this manuscript, we show
that SEMFR lavas have BAB-like geochemical
and petrographic features, and opening of the
Southernmost Mariana Trough allowed adiabatic
decompression melting of BAB-like asthenos-
pheric mantle in the forearc to produce SEMFR
lavas at 3.7-2.7 Ma.

GEODYNAMIC SETTING

The Mariana intraoceanic arc system is the south-
ern third of the IBM convergent margin. It is gen-
erally associated with a sediment-starved forearc
~200 km wide (Fryer et al. 2003; Kato et al. 2003),
submarine and subaerial voleanoes of the active
magmatic arc (Baker et al. 2008), and a BAB with
a spreading axis that generally lies ~250-300 km
from the trench (Stern et al. 2003). Mariana geo-
dynamic evolution was influenced by collisions
with buoyant oceanic plateaus (Ogasawara Plateau
in the north and Caroline Ridge in the south).
These resisted subduction, stimulating backarc
extension to open the Mariana Trough between the
collisions (Wallace et al. 2005).

The IBM mostly trends N-S but the southern-
most Mariana convergent margin (13°10’N-11°N)
bends to E-W (Fig. 1a; Bird 2003). This region is
deforming rapidly (Martinez et al. 2000; Kato et al.
2003), accompanied by abundant igneous activity.
Here, the Mariana Trench reaches the deepest
point on Earth at the Challenger Deep (10994 m;
Gardner & Armstrong 2011), and the Pacific—
Philippine Sea plate convergence is approximately
orthogonal to the trench (Fig. la,b; Bird 2003).
The tectonic evolution of the southernmost
Mariana arc began with the Late Miocene collision
of the Caroline Ridge, which pinned the Yap arc
and allowed the southern Mariana Trough to open,
sculpting the southern termination of the arc
(Miller et al. 2006b). The southernmost Mariana
magmatic arc is poorly developed and entirely sub-
marine, contrasting with the large, often subaerial,
arc volcanoes to the north. The arc magmatic front
almost intersects the southern end of the BAB
spreading center south of 13°N (Fig. 1b; Fryer
et al. 2003). These features are about 100-150 km
from the trench, whereas to the north the BAB
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spreading axis lies ~250-300 km from the trench
and is separated from the magmatic arc by
50-100 km (Fryer et al. 1998; Stern et al. 2003).
The magmatic arc appears to have been reorga-
nized recently, as evidenced by a complex bathy-
metric high with multiple nested calderas — an
inferred paleo-arc (the Fina-Nagu Voleanic Chain
in Fig. 1b) where no hydrothermal activity was
observed (Baker etal. 2008) and calderas are
covered with sediments (Fig. 1¢) — SE of and par-
allel to the modern magmatic arc (e.g. Toto
caldera). The southern Mariana Trough has a well-
defined spreading ridge, the Malaguana-Gadao
Ridge (MGR), with a well-developed magma
chamber and several hydrothermal vents (Baker
et al. 2008; Kakegawa et al. 2008; Becker et al.
2010). Because the subducted Pacific plate lies
~100 km beneath it, the MGR melt source region
captures hydrous fluids usually released beneath
arc volcanoes, enhancing mantle melting and
resulting in an inflated ridge morphology that is
unusually robust for the Mariana Trough backarc
basin, in spite of anintermediate spreading rate
(<65 mm/yr; Fryer et al. 1998; Martinez et al. 2000;
Becker et al. 2010). More rapid extension along the
MGR might also enhance decompression melting
(Becker et al. 2010).

The southernmost Mariana convergent margin
is underthrust by a narrow slab of Pacific plate
(traceable to ~250 km depth; Gvirtzman & Stern
2004), torn N-S at ~144°15’E (Fryer et al. 1998;
Gvirtzman & Stern 2004). Analogue experiments
show that short, narrow subducted slabs trigger
toroidal (around the slab edge) and poloidal
(underneath the slab tip) asthenospheric mantle
flows that generate rapid slab rollback and trench
retreat relative to the upper plate (Funiciello et al.
2003, 2006; Schellart et al. 2007). These conditions
lead to weak coupling of the subducting plate with
the overriding plate, stimulating rapid deforma-
tion of the overriding plate (i.e., the southern
Mariana Trough) and may be responsible for the
very narrow forearc that defines the southern
Mariana margin west of the W. Santa Rosa Bank
Fault (Fig.1b, Gvirtzman & Stern 2004). The
unusual tectonic situation of the southernmost
Mariana convergent margin has also affected
magmagenesis. Sub-forearc mantle usually is too
cold to melt (Van Keken et al. 2002; Wada et al.
2011), so that slab-derived fluids only lead to ser-
pentinization (Hyndman & Peacock 2003). Instead,
the dynamic tectonic setting of the southern Mari-
anas results in mantle melting much closer to the
trench than is normally observed.

© 2013 Wiley Publishing Asia Pty Ltd

GEOLOGY AND MORPHOLOGY OF THE SOUTHEAST
MARIANA FOREARC RIFT

Most of the IBM convergent margin is underlain
by lithosphere that formed after subduction began
~52 Ma (Reagan et al. 2010; Ishizuka et al. 2011).
In the southernmost Marianas, Eocene forearc
lithosphere was stretched in late Neogene time to
accommodate the opening of the Mariana Trough
BAB; part of this extension is localized along the
SEMFR (Martinez & Stern 2009). The morpho-
logical expression of the SEMFR is apparent
over a region ~40 km wide and at least 60 km
long (Supporting Information Table S1.2). The
SEMFR is composed of broad southeast-trending
deeps and ridges (Fig. 1b), each 50 to 60 km long
and 3 to 16 km wide, which opened nearly parallel
to the trench axis. These rifts can be traced from
the Mariana Trench almost to the FNVC
(Fig. S1.1 in Supporting Information S1). Kast-
ward, the SEMFR is bounded by a N-S fault, the
W. Santa Rosa Bank Fault (WSRBE, Fig. 1b;
Fryer et al. 2003), which separates thick crust of
the broad Eocene forearc to the north and east
(including that beneath Santa Rosa Bank) from
the deeper and narrower forearc of the S. Mari-
anas — including the SEMFR - to the west. The
WSRBF also appears to overlie a tear in the sub-
ducted slab (Fryer et al. 2003; Gvirtzman & Stern
2004). The WSRBF is taken to be the eastern
boundary of the SEMFR because it does not have
the same NNE-SSW trend as the three SEMFR
deeps (Fig.1b), and the forearc is significantly
older to the east (Reagan etal. 2010). The
SEMFR overlies the shallow part of the slab
(=30-100 km deep, Becker 2005) and is situated in
a region with numerous shallow (crustal) earth-
quakes, (Martinez & Stern 2009) signifying active
deformation.

We studied the SEMFR by interpreting swath-
mapped bathymetry and previously published
HMR-1 sonar backscatter imagery (Martinez
et al. 2000). The region is characterized by high
sonar backscatter, indicating little sedimentary
cover (Fig.1lc). This was confirmed by Shinkai
6500 manned submersible and YKDT deep-tow
camera/dredge seafloor studies. Table S1.1 in
Supporting Information S1 summarizes the posi-
tion and lithologies encountered during these
dives (Fig.1b). Most dives recovered basalt. In
addition, deeper crustal and upper mantle litholo-
gies, e.g. diabase, fine-grained gabbros and
deformed peridotites, were recovered near the
WSRBF (Supporting Information Figs S1.7 and
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c¢: Outcrop of lava flow observed
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Fig. 2 Typical bottom profiles of SEMFR encountered during seafloor traverses. (a) near the trench axis (Shinkai 6500 dive 1230) and (b) near the
Fina—Nagu Volcanic Chain (FNVC; YKDT-87). Near the trench, SEMFR flanks are dominated by steep talus slopes of lava fragments with few exposures
of tilted and faulted lava flows. Talus and outcrops are covered by thin pelagic sediment. Near the FNVC, SEMFR relief is smoother with better-preserved
pillow lava outcrops covered by thin sediment. Photographs of the typical seafloor observed near the trench (c, d) and near the FNVC (e). Black star in (b)

shows the beginning of YKDT deep-tow camera dredging.

S1.8). Similar lithologies are also reported by pre-
vious studies of the area (Bloomer & Hawkins
1983, Fryer, 1993, Michibayashi et al. 2009; Sato
& Ishii 2011). Based on relief, the SEMFR can be
subdivided along strike into NW, central, and SE
sectors. The SEMFR relief is most rugged in the
SE sector near the trench, where it is intensely
faulted and affected by landsliding, with abun-
dant talus slopes of fragmented basaltic lavas
(Fig. 2a,e,d and Figs S1.5 to S1.8 in Supporting
Information). The central SEMFR is less faulted,
with more outcrops and less talus, but still has
many steep talus slopes and faulted lava flows
(Figs S1.9-S1.10 in Supporting Information). The
NW SEMFR, nearest the MGR, has gentler
relief, with better-preserved pillow lava outerops
(Fig. 2b,e and Figs S1.11-S1.13 in Supporting
Information). We did not recover samples of
Paleogene forearc crust in the SEMFR, although

this is common to the NE and west, indicating
that SEMFR is floored by young, tectonized
oceanic crust. Our bottom observations along
with the absence of parallel magnetic fabrics
in the SEMFR (Martinez et al. 2000) suggest
that the SEMFR is no longer a site of active
voleanism.

Toto caldera and part of the MGR near the
NW limit of the SEMFR were studied during
ROV Kaiko Dives 163 and 164 (R/V Kairei cruise
KRO00-03 Leg 2, Fig. 1b). Toto caldera, which may
be part of the immature magmatic arc, is mostly
covered by talus of fresh lava fragments with a
whitish coating, perhaps bacteria or sulfur-rich
precipitate (Supporting Information Fig. S1.14),
derived from the active Nakayama hydrothermal
site (Gamo et al. 2004; Kakegawa et al. 2008). The
MGR seafloor is mostly composed of fresh, well-
preserved pillow lavas alternating with aa and

© 2013 Wiley Publishing Asia Pty Ltd
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solidified lava lake (Becker et al. 2010), along with
active hydrothermal vents (Supporting Informa-
tion Fig.S1.15) indicating ongoing magmatic
activity. Figure 1c shows high sonar backscatter
for Toto caldera and around the MGR, indicating
hard rock (fresh lava) exposures and thin sedi-
ments, consistent with seafloor seen in dive
videos.

METHODS

Igneous rock samples were collected during two
cruises YK08-08 Leg 2 (Shinkai 6500 manned sub-
mersible dive 1096) in 2008 and YK10-12 (Shinkai
6500 dives 1230, 1235 and Yokosuka deep-tow
camera dredge (YKDT) 85, 86, and 88) in 2010.
Representative, fresh samples were selected
onboard for petrographic and geochemical studies.
Information from Kaiko ROV dives 163 and
164(R/V Kairei cruise KR00-03 Leg 2 in 2000) is
also included. High-resolution videos of the seaf-
loor generated during dives were reviewed during
and after the cruises (see Supporting Information
S1 for more details). GMT (Smith & Wessel 1990;
Wessel & Smith 1995a,b, 1998) was used to compile
SEMFR bathymetric data, including swathmap-
ping results from these cruises and those of
Gardner (2006), Gardner (2007), and Gardner
(2010). Maps were imported into ArcGIS to gener-
ate bathymetric cross sections perpendicular to
the strike of the SEMFR (Fig. S1.1 in Supporting
Information).

Igneous rock samples were analyzed, using the
procedures reported in Supporting Information
S2. For major element analyses, fresh sample
chips containing as few phenocrysts as possible
were hand-picked and powdered in an alumina ball
mill. Whole rock chemical analyses for Shinkai
dive 1096 samples were carried out on Philips
PW1404 X-ray fluorescence (XRF) spectrometer
at the Geological Survey of Japan/AIST. External
errors and accuracy are < 2%. Whole rock chemi-
cal analyses for other samples were performed at
the University of Rhode Island by fusion—
dissolution of glass beads; and analyses were con-
ducted using an Ultima-C Jobin Yvon Horiba
Inductively Coupled Plasma Atomic Emission
Spectroscopy (ICP-AES) at Boston University.
Glass beads were generated by melting
400 = 5mg of lithium metaborate (LiBO,) flux
with 100 = 5mg of ignited sample powder at
1050°C for 10 min. Molten beads were dissolved in

© 2013 Wiley Publishing Asia Pty Ltd

5% nitric acid to achieve a final dilution factor of
~4000 (Kelley et al. 2003). Calibration curves for
ICP-AES data yield r* = 0.999, reproducibility of
replicate analyses are = 3% rsd for each element,
and major element oxides sum to 99 =1 wt%.
Replicates of samples analyzed by ICP-AES
and XRF yield averaged reproducibility < 4%
rsd for each element. Results are reported in
Table 1.

For mineralogical chemistry analyses, polished
thin sections were prepared for 16 samples. These
were analyzed using the Cameca SX-50 electron
microprobe at University of Texas at El Paso. Mul-
tiple point analyses give a mean value with 1o
precision = 1 wt% for each selected mineral.

Four samples were dated by step-heating “*Ar—
¥Ar at the Geological Survey of Japan/AIST on a
VG Isotech VG3600 noble gas mass spectrometer
fitted with a BALZERS electron multiplier.
Further details of procedures are reported in Sup-
porting Information S2.

RESULTS

ROCK DESCRIPTION

Here we outline the principal petrographic and
mineralogical features of igneous rocks sampled
from the SEMFR, Toto caldera, and MGR. The
method for sample description is reported in Sup-
porting Information S3 and detailed sample
descriptions are provided in Supporting Informa-
tion S4. The SEMFR lavas are mostly aphyric
(<1% phenocrysts) and sparsely phyric (1-5%
phenocrysts) basalts and basaltic andesites, indi-
cating eruption at near-liquidus temperatures.
These are microporphyritic pillows or massive
flows, with thin, microcrystallite-rich glassy rims
(1-11 mm of fresh, translucent to dark brown
glass), thin (=1 mm) Mn coat, and negligible alter-
ation (Fig. 3). Pillow lavas are vesicular despite
being collected at ~6000-3000 m, indicating that
these magmas contained significant volatiles. In
contrast, basaltic massive lava flows are more
crystalline and less vesicular. Embayed phenoc-
rysts indicate disequilibrium, perhaps due to
magma mixing. Pillowed lavas sampled in the NW
(YKDT-88) contain larger crystals (=0.5 mm) of
clinopyroxene and olivine set in a finely microcrys-
talline olivine-rich groundmass (Fig. 3¢). Similar
olivine-rich lavas were not sampled elsewhere in
the SEMFR. Diabase and fine-grained gabbros
were also recovered near the WSRB fault (Shinkai
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Fig. 3 Photomicrographs of SEMFR lavas and fine gabbro. (a) Typical microporphyritic olivine — clinopyroxene basalt (sample 1230-R2) with microlitic
groundmass and microphenocrysts of plagioclase (pl) and clinopyroxene (cpx). (b) Fine-grained diabase xenolith (sample 1235-R12) hosted by
microcrystalline basalt (finer grained part to left). The diabase contains Mg-rich olivine (Fog), Mg-rich clinopyroxene (Mg# = 80) and normally zoned
Ca-rich plagioclase (=0.1 mm). In contrast, the basaltic host is more fractionated, with Fe-rich olivine (Fogs—gs) and Mg-rich clinopyroxene microphe-
nocrysts (=0.1 mm). Clinopyroxene in the groundmass (< 0.1 mm) are Mg-poor and coexist with Ca-poor plagioclase microlites. Clinopyroxenes in the
diabase exhibit oscillatory and reverse zoning. The boundary between the two textural realms is straight, suggesting that basalt magma picked up solidified
diabase. See Supporting Information S4 for more details. (c) Olivine—clinopyroxene basalt from YKDT-88 containing large olivine xenocrysts surrounded
by olivine-rich groundmass. (d) Photomicrograph of cryptocrystalline plagioclase basalt from Shinkai dive 1235 (sample 1235-R8) hosting an amphibole
gabbro xenolith (chl, chlorite; amph, amphibole). The contact between gabbro and basalt is an irregular chilled margin, suggesting that the basalt picked
up solid pieces of gabbro. A second chilled margin is observed inside the basalt, suggesting multiple magmatic injections in the basalt. (¢) Photomicro-
graph of plagioclase (pl) xenocryst observed in the Shinkai dive 1230 (sample 1230-R17). The core of the plagioclase is well-preserved and exhibits Angi_g
content. The mantle exhibits Ang-go and is mostly resorbed (sieve-texture) due to the interaction plagioclase-melt. The rim is well-preserved and iS Angs-gs.
Plagioclase microlites have lower An content (An<80%). Larger, Mg-rich clinopyroxenes (cpx) occur near the An-rich plagioclase xenocrysts
(Mg# = 86-88), while the clinopyroxenes microlites exhibit higher range in Mg# (74-88). Such An-rich plagioclases are observed in the arc crust.

See Supporting Information S4 for details.

6500 dive 1235; Fig. 3b,d). These might represent cryptocrystalline andesites with a glassy ground-

the lower crust of the SEMFR (dike complex and mass and <1% plagioclase microlites. Lava flows
gabbro layer). from the Toto caldera are vesicular, sparsely

Pillow lavas from the MGR are very fresh, phyric to aphyrie, fine-grained to eryptocrystalline
with translucent glassy rinds. Lavas are vesicular, basaltic andesites.

© 2013 Wiley Publishing Asia Pty Ltd



MAJOR ELEMENT AND MINERAL COMPOSITIONS

The SEMFR lavas are fresh basalts and basaltic
andesites, with 50.4 to 57.0 wt% SiO; (data
reported are adjusted to 100% total on an anhy-
drous basis, Fig.4a). In terms of normative
compositions, all lavas are quartz tholeiites.
These define a low-K to medium-K suite, with
K50 < 1 wt%. Lava compositions cluster along the
tholeiitic—cale-alkaline boundary on a plot of FeO*/
MgO vs. SiOy (Fig. 4b; Miyashiro 1974), or along
the medium-Fe/low-Fe boundary (Arculus 2003).
Lavas recovered during Shinkai 6500 dive 1096
and 1230 and YKDT-86 and —88 are relatively
primitive, with whole rock Mg# (= atomic Mg *
100/(Mg + Fe)) > 60, Fig.4c). Other SEMFR
samples are significantly more fractionated, with
Mg# =41-60. Composition of SEMFR lavas is
reported in Table 1. The MGR and Toto caldera
lavas are mostly andesites (SiOs = 55.1-61.7 wt%,
with K:0 <0.5 wt% and Mg# =33-53). None of
the studied lavas are boninitic (MgO >8 wt%,
Si0; > 52 wt%, Ti0; < 0.5 wt%; Le Bas 2000). Toto
caldera lavas plot within the compositional field of
southernmost Mariana volcanic arc lavas (SMA:
13°10'N-11°N, Kakegawa et al. 2008; Stern et al.
2013), suggesting that the Toto caldera belongs
to the S. Mariana arc volcanoes (SMA). Toto
caldera samples also cluster along the tholeiitic—
calc-alkaline boundary. In contrast, MGR lavas are
tholeiitic (medium-Fe to high-Fe) basaltic andes-
ites and andesites (Kakegawa et al. 2008; Pearce
et al. 2005; Fig.4ab). The Fe enrichment of
the MGR lavas (Fig. 4b) suggests that their paren-
tal magmas contain less water, inhibiting early
crystallization of Fe-oxides. In Figure 4a, MGR
lavas do not plot along the SEMFR fractionation
trend, and their similar KyO content suggests
that MGR and SEMFR lavas interacted with
similar arc-like slab-derived fluids. FABs (Reagan
et al. 2010) are low-K to medium-K basalt to
basaltic andesites that plot within the tholeiitic
and calc-alkaline fields (Fig.4b,c); and the
SEMFR plots along the FAB fractional trend
(Fig. 4¢,d). All lavas from the southernmost
Marianas suggest fractionation controlled by pla-
gioclase, clinopyroxene = olivine crystallization
trend (Fig. 4c,f).

The SEMFR basalts and basaltic andesites
contain olivine, clinopyroxene, and plagioclase.
Results for representative mineral composition
are listed in Supporting Information Tables S4.1 to
S4.4 and summarized in Table 2. Mineral composi-
tions correlate with whole rock chemical composi-

Geodynamic evolution of SEMFR 11

tions (Fig. 5a,b and Supporting Information S5).
Near-primitive (Mg# > 60), olivine-rich SEMFR
lavas (Shinkai dive 1096, upper series and YKDT-
88) contain Mg-rich olivines (Fosggs) in equilibrium
with Mg-rich clinopyroxene (Mg# =83-91) and
anorthitic plagioclase (An = 80). In contrast, frac-
tionated (Mg# = 60) lavas have Fe-rich olivine
(Fors_s4) coexisting with two kinds of clinopyroxene
(endiopside—diopside with Mg# = 80 and augite
with Mg# <80) and plagioclase (An =80 and
An < 80). Reverse and oscillatory zoning is only
observed in more fractionated plagioclase (An < 80
in the core), suggesting magma mixing perhaps in
a magmatic reservoir. Fine-grained gabbro and
diabase have Mg-rich clinopyroxenes (Mg# = 60)
coexisting with more albitic plagioclase (An = 70).
The mineral composition of the Toto caldera
lavas and MGR lavas are within the compositional
range of SEMFR lavas. Occurrence of two mineral
compositional groups in Toto and MGR lavas,
without significant compositional overlap, strongly
suggests magma mixing (Supporting Informa-
tion S4.2 and Fig. S4.1).

Olivine xenocrysts (=0.5 mm) enclosing chro-
mium spinel are common in primitive lavas
(Figs 3¢,5e). Olivine xenocrysts have higher Fo con-
tents (Fogg_ge core and Fogr_o; rim) than do the olivine
phenocrysts (Fogsss, Table S4.3 and Fig. S4.1 in
Supporting Information) in their host basalts.
Olivine xenocrysts host chromium spinel with Cr#
(= 100 x Cr/(Cr + Al)) =47-73. The olivine-spinel
assemblages plot in the mantle array of Arai (1994)
and they are similar to thoseof the SE Mariana
forearc mantle peridotite (Cr# >50 and Fogg gs,
Ohara & Ishii 1998), suggesting that these xenoc-
rysts are samples of forearc mantle (Fig. 5¢).

“AR-*AR AGES

Four SEMFR samples (two samples from Shinkai
6500 dive 1096, one sample each from Shinkai
6500 dive 1230 and YKDT-88) were dated by
step-heating ®’Ar-**Ar (Fig. 6 and Table 1). Initial
©Ar-*Ar for these samples (290-295) is nearly
atmospheric (**Ar—Ar smosphere = 298.6), indicating
that negligible radiogenic “°’Ar was inherited.
Dated samples from dive 1096 samples include
one from each of the lower (1096-R2) and upper
series (1096-R16) lavas. These gave indistinguish-
able plateau ages of 3.5 = 0.4 Ma (lower series
1096-R2) and 3.7 = 0.3 Ma (upper series 1096-
R16). Shinkai dive 1230 and YKDT-88 gave slightly
younger ages, respectively of 2.8 = (0.5 Ma and

© 2013 Wiley Publishing Asia Pty Ltd
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Fig. 4 Major element compositional characteristics of SEMFR, MGR, Eocene forearc basalts (FABS; Reagan et al. 2010), S. Mariana Arc lavas (SMArc:
13°10'N—11°N) which include Toto caldera lavas. All data recalculated to 100% anhydrous. (a) Potash-silica diagram (Peccerillo & Taylor 1976), showing
that SEMFR lavas are low-K basalts to medium-K basaltic andesites. The grey field represents Mariana Trough BAB lavas (Hawkins ef al. 1990; Gribble et al.
1996; Pearce et al. 2005; Kelley & Cottrell 2009) and the hatched field represents Mariana Arc lavas (Pearce et al. 2005; Wade et al. 2005; Stern et al. 2006;
Shaw ef al. 2008; Kelley & Cottrell 2009; Kelley et al. 2010). The small grey triangles are Malaguana—Gadao Ridge (MGR) data from Kakegawa éf al. (2008)
and Pearce et al. (2005). The small black triangles are data from SMA volcanoes (Kakegawa et al. 2008; Stern et al. 2013). Larger grey triangles denote MGR
and larger black triangles denote Toto samples reported in this manuscript. The field for boninites is from Reagan et al. (2010). Note that SEMFR lavas
mostly plotin field of Mariana Trough BAB lavas. (b) Fe0*/Mg0 vs SiO, diagram for medium-Fe, medium-Fe, high-Fe discrimination (Arculus 2003); green
line discriminates between tholeiitic and calk-alkaline lavas (Miyashiro 1974). (c) Mg# vs SiO, and (d) Ca0, (e) Al,0s, (f) FeO* plotted against MgO for
SEMFR, MGR, and Toto caldera. When plagioclase starts crystallizing, it produces a hinge in the liquid line of descent (LLD) of Al,Qs. The hinge in Al,O3
is observed at Mg0 =6 wt%; and the kink in Ca0 and Fe0* is observed at MgQ ~7 wt%. Therefore. primitive lavas are identified with Mg0 = 7 wt%,
following the method of Kelley et al. (2010). Arrows represent fractionation trends. Ol: olivine, pl: plagioclase, cpx: clinopyroxene. We used the same
method as for SEMFR lavas (MgO = 7 wt%) to filter the Mariana arc and Mariana Trough lavas.
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YKDT88-R2.

2.7 + 0.3 Ma. The SEMFR “Ar-**Ar ages indicate
that seafloor spreading occurred in Pliocene time
(Fig. 1b), and suggest that the SEMFR seafloor
youngs toward the MGR.

DISCUSSION

GENESIS OF SEMFR LAVAS

Compositions of lavas and their minerals record
the conditions of magma genesis and evolution;
and from this, important tectonic information can
be gleaned (e.g. Klein & Langmuir 1987). Incom-
patible elements such as K;0, NayO and TiO; are
concentrated in the melt as mantle melting or
crystal fractionation proceeds. The first melt frac-
tion is enriched in these elements and so concen-
trations anti-corrrelate with fraction of melting, or
‘F’ (Klein & Langmuir 1987; Taylor & Martinez

© 2013 Wiley Publishing Asia Pty Ltd

2003; Kelley et al. 2006, 2010). In addition, KO
contents in convergent margin magma sources
are strongly affected by subduction-related
metasomatism (e.g. K-h relationship, Dickinson
1975; Kimura & Stern 2008), therefore this
element is generally not used to monitor F. FeO
contents in basalts also contain petrogenetic infor-
mation. In basaltic systems, deeper melts are pro-
gressively enriched in iron (Klein & Langmuir
1987). Therefore, the Naz0, TiO; and FeO contents
of lavas are good proxies for the degree and depth
of melting. However, estimating the extent and
depth of partial melting requires primitive lavas
with compositions in equilibrium with their mantle
source. Consequently, NaO, TiO; and FeO con-
tents are commonly corrected for olivine fraction-
ation in order to infer their Nag, Tiz and Feg
contents (Nay0, TiO, and FeO contents calculated
at MgO =8 wt%). The Nas of N-MORBs anti-
correlates with Feg, indicating that melting is
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Fig. 6 The ““Ar—*°Ar age spectra with ®Ar—*Ar vs *Ar—*Ar plot for samples from the SEMFR. Percentage of *Ar released during analysis is also

reported.

greater if it begins deeper (Fig.7a; Klein &
Langmuir 1987; Arevalo Jr. & McDonough 2010).
Subduction-related melting is somewhat different
because melting extents are enhanced by water
(Gribble et al. 1996; Taylor & Martinez 20083;
Kelley et al. 2006). BAB magma sources often are
affected by subducted water and are characterized
by more melting at shallower depth than MORBSs,
so that Nas increases with Feg (Fig. 7a; Taylor &
Martinez 2003; Kelley et al. 2006). BAB and arc
lavas have distinct geochemical signatures (Fig. 7),

resulting from elements dissolved in fluids derived
from the subducting slab that are involved in
magma genesis. Are lavas have lower Nag and Tig
contents at higher K,O/TiO; and Fes content
because they formed by high degrees of melting
at greater depths in the presence of slab-derived
fluids. In contrast, BAB lavas have higher Nag and
Tis contents at lower K-O/TiO; and Feg content, as
they were generated at shallower depth by adia-
batic mantle decompression, with less involvement
of slab-derived fluids.
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Fig. 7 Diagrams showing variations in (a) Nas, (b) Tis, (d) K20/TiO, versus Fes and (c) K.0/TiO, versus Tis. Nag and Tig are proxies for the fraction of
mantle that is melted, Feg is a proxy for the depth of mantle melting (Klein & Langmuir 1987), and K,0/TiQ; is a proxy for the subduction input. The grey
field represents Mariana Trough BAB lavas (Hawkins ef al. 1990; Gribble et al. 1996; Pearce ef al. 2005; Kelley & Cottrell 2009) and the hatched field
represents Mariana arc lavas (Pearce ef al. 2005; Wade ef al. 2005; Stern ef al. 2006; Shaw et al. 2008; Kelley & Cottrell 2009; Kelley ef al. 2010). Primitive
lavas from the Mariana Trough and the Mariana arc were filtered as SEMFR lavas (MgO = 7 wt%) for consistency. The FABs field is from Reagan et al.
(2010). The negative correlation of Nag with Fes of N-MORBs (grey arrow; Arevalo Jr. & McDonough 2010) shows that more magma is produced when
melting begins deeper; while in subduction-related lavas, more melting is produced shallower. SEMFR lavas have Nas and Tig contents slightly varying with

Feg content, indicating homogeneous degree of mantle melting.

To investigate SEMFR magmagenesis (i.e.
whether SEMFR lavas were produced in BAB-
like and/or in arc-like magmagenetic settings),
we calculated Nag, Tis and Fes contents for
these lavas. Plots of Al;O3, CaO and FeO* against
MgO (Fig.4d-f) show that the kinks in Al,O;
and CaQ, indicating the beginning of plagioclase
and clinopyroxene crystallization, are respectively
observed at Mg0O =6 wt% and at MgO ~7 wt%.
Therefore, data were filtered to exclude highly
fractionated samples with MgO < 7 wt% that crys-
tallized olivine, clinopyroxene, and plagioclase on
their LLD (Fig.4d-f), following the method
described in Kelley et al. (2006) and Kelley et al.
(2010). The least fractionated samples with 7-8
wt% MgO, which fractionated olivine only (Fig. 4d-
f), were then corrected to MgO =8 wt% using
the equations of Klein and Langmuir (1987)
for Nag and Fes, and Taylor and Martinez (2003)
for Tig. These are listed in Table 1 (mean SEMFR
Nag=1.99 = 0.40 wt% (1 std. dev.); mean Tis = 0.60
* 0.11 wt%;. mean Fes=6.91 + 0.54 wt%). The

© 2013 Wiley Publishing Asia Pty Ltd

Nag, Feg and Tis contents of SEMFR lavas are
slightly lower than those observed for N-MORBs
(Arevalo Jr. & McDonough, 2010), indicating that
higher degrees of mantle melting were produced
at shallower depths. The SEMFR lavas have
similar Tis and Nag contents at lower Fes than
FABs; and they plot in the compositional overlap
between Mariana arc lavas and the Mariana BAB
lavas, with homogeneous, low Nag and Tis contents
varying little with Feg content (F'ig. 7a-b), suggest-
ing a roughly constant degree and depth of mantle
melting. These lavas were produced by extensive
melting (=15%) of shallow mantle (~25 = 6.6 km,
see the section entitled Pressure and Temperature
of Mantle Melting). The K;0/TiO: (proxy for
the total subduction input; Shen & Forsyth 1995)
of SEMFR lavas is higher that of FABs and
plot between the arc-BAB compositional fields
(Fig. Te-d), well above N-MORBS, further demon-
strating a subduction component in SEMFR
magma genesis. Only lavas from YKDT-88, col-
lected closest to the FNVC (Fig. 1b), do not plot on
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beneath SEMFR (=30 km—100 km depth; Becker 2005).

the SEMFR compositional field (Fig. 7a-c), with
lower Nag and Tis at similar Feg contents. Their
Tis and Nag values are lower than those of Mariana
arc lavas (Fig. 7a-c), suggesting that YKDT-88
lavas were produced by more mantle melting
and/or melting of a more depleted mantle source
at similar depth compared to other SEMFR
magmas.

The above inference that SEMFR lavas are
similar to backarc basin basalts (BABB) can be
checked by examining mineral compositions,
because arc basalts and BABBs have distinct
An-Fo relationships (Stern 2010). Arc basalts
contain more Fe-rich olivine with more An-rich
plagioclase compared to BABB, MORB, and OIB
(Ocean Island Basalt, Fig.8a) because higher

© 2013 Wiley Publishing Asia Pty Ltd
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water contents in arc magmas delay plagioclase
but not olivine crystallization (Kelley et al. 2010;
Stern 2010), resulting in higher CaO and FeO con-
tents in the melt when plagioclase starts crystal-
lizing. In contrast, BABBs, formed largely by
adiabatic decompression mantle melting, have
Fo-An relationships essentially indistinguishable
from those of MORB and OIB (F'ig. 8a). Accord-
ingly, we can discriminate arc basalts from BABBs
based on An and Fo contents of the plagioclase—
olivine assemblages. Figure 8a shows that most
SEMFR lavas plot within the BABB compositional
field, consistent with observations from Nas, Tis,
and Feg discussed in the previous section. Some
samples also plot within the arc compositional
field, strongly suggesting that BAB-like (i.e. adia-
batic decompression melting) and arc-like (i.e. wet
mantle melting) conditions of magmagenesis coex-
isted beneath SEMFR. We propose that SEMFR
magmas formed by adiabatic decompression of
fertile asthenospheric mantle (BAB-like mantle)
metasomatized by slab-derived fluids, enriching
the melt in water and sometimes delaying plagio-
clase fractionation.

PRESSURE AND TEMPERATURE OF MANTLE MELTING

The P-T conditions of mantle melting, recorded
by primary melts in equilibrium with the mantle
beneath SEMFR, were calculated from major
element compositions of primitive basalts with
MgO =7 wt% (Kelley et al. 2010; Fig.4d-f) by
using the geothermobarometer of Lee et al. (2009),
based on Si, Mg and water contents of primitive
magmas. The estimated P-T conditions are those
of the last melt in equilibrium with the mantle or a
mean value of the P-T conditions of polybaric,
fractional pooled melts recorded along a melting
column (Kelley et al. 2010). SEMFR lavas are
compositionally similar to BABBs, we therefore
used BAB-like oxidation state (Fe*/Fer=0.17)
and averaged Mariana BAB water content (1.31
wt%; Gribble et al. 1996; Kelley & Cottrell 2009)
for SEMFR lavas, Fe*/Fer=0.17 for Mariana
Trough lavas and Fe*/Fe® = 0.25 for Mariana arc
magmas (Kelley & Cottrell 2009). We also used
lherzolitic BAB-like mantle source (Fog; Kelley
et al. 2006) to estimate the P-T conditions of
SEMFR mantle melting. Primitive lavas of the
Mariana Trough and the Mariana arc with ana-
lyzed water were filtered for MgO =7 wt% as
SEMFR lavas for consistency. SEMFR whole rock
compositions indicate melting pressures of 0.5-0.9
GPa (= 0.2 GPa) and temperatures of 1217-1269°C

© 2013 Wiley Publishing Asia Pty Ltd

(* 40°C), with a mean of 0.7 = 0.2 GPa (~23 =
6.6 km) and 1239 = 40°C (Fig. 8b). This is consis-
tent with melting just above the present subduct-
ing slab (=30-100 km depth), although we do not
know the position of the subducting slab at 2.7-3.7
Ma, when SEMFR melts were generated. Mariana
Trough BABBs (Gribble et al. 1996; Kelley &
Cottrell 2009) have similar P-T conditions of
mantle melting (0.7-1.5 = 0.2 GPa, 1214-1359 =
40°C; mean melting depth ~33 = 6.6 km). In con-
trast, Mariana arc lavas (Shaw et al. 2008; Kelley
et al. 2010) show higher P-T conditions of mantle
melting (1.1 -3.0 = 0.2 GPa, 1240 — 1522 = 40°C).
These results suggest that SEMFR lavas and
Mariana Trough BABBs were similarly generated
by adiabatic decompression of shallow asthenos-
pheric mantle (~25-30 * 6.6 km). In contrast, arc
lavas (Shaw et al. 2008; Kelley & Cottrell 2009;
Kelley et al. 2010) recorded deeper (mean melting
depth ~51 * 6.6 km) and hotter mantle melting
conditions (Kelley et al. 2010). This leads to the
further deduction that SEMFR lavas formed by
BABB-like seafloor spreading at 2.7 to 3.7 Ma.

GEODYNAMIC EVOLUTION OF THE SOUTHEASTERN
MARIANA FOREARC RIFT

Investigations of the petrography and geochemis-
try of SEMFR lavas reveal that: i) SEMFR lavas
are petrographically and compositionally similar to
Mariana Trough BABBs; (ii) SEMFR melts inter-
acted with the pre-existing forearc lithosphere and
picked up some forearc mantle olivines, indicating
rapid ascent; (iii) magmatic activity (2.7-3.7 Ma)
formed SEMFR oceanic crust by seafloor spread-
ing (no Eocene forearc basement has been recov-
ered from the SEMFR); (iv) SEMFR primitive
basalts formed by decompression melting at
~23 km depth and 1239°C, like that associated with
the Mariana Trough backarc basin, suggesting
similar formation; and (v) lack of evidence for
recent igneous and hydrothermal activity, except
near MGR and the Toto caldera, indicates that the
presently-observed NNW-SSE trending relief
formed during post-magmatic rifting (<2.7 Ma).
The SEMFR is a rift with no morphological
expression of large arc-like volcanoes, like those of
the Mariana arc. SEMFR lavas are vesicular with
K30 contents (Fig. 4a) and K20/TiO; ratios that are
similar to MGR and other Mariana Trough BAB
lavas (Fig. 7c,d). They also have similar P-T condi-
tions of magma genesis, demonstrating that they
formed by adiabatic decompression of BAB-like
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Fig. 9 Geodynamic evolution of SEMFR. (a) The Mariana Trough is opening ~5 Ma. (b) Spreading of the Mariana Trough rifts the arc lithosphere (in
orange) and forms SEMFR by stretching the forearc crust (in yellow) ~2.7-3.7 Ma. We speculate that SEMFR is a spreading center with intense magmatic
activity. (c) Post-magmatic deformation of SEMFR occurred < 2.7 Ma, and intensely deformed the Eocene forearc crust. (d) Today, SEMFR is no longer
magmatically active and amagmatic extension dominates the rift. Eocene forearc is eroded with opening of the S. Mariana Trough. Actual position of the
forearc is based on R/V Yokosuka YK08-08 Leg 2 and YK10-12 cruise reports (Ohara ef al. 2008, 2010). The red box highlights the area of Figure 10.

mantle metasomatized by slab-derived fluids.
These observations raise a fundamental question:
were SEMFR lavas produced by seafloor spread-
ing in the backarc basin or in the forearc? The
southernmost Mariana convergent margin has
reorganized rapidly since its collision with the
Caroline Ridge, suggesting that SEMFR lavas
were produced by different geological settings
from those that exist today. From the location of
the SEMFR adjacent to the trench, it is clear
that these lavas formed in the forearc. We propose
a geodynamic model for the southernmost Mariana
are, in which SEMFR formed to accommodate
opening of the southernmost Mariana Trough
(Fig. 9a,b and Fig. 10a-c). Rupturing the forearc
lithosphere allowed asthenospheric mantle to flow
into the forearc and to melt by adiabatic decom-
pression under hydrous conditions at 2.7-3.7 Ma;
and origin of the SEMFR mantle (i.e. from the
backarc basin, the are, or a slab window) is still
under investigation. Some SEMF R melts picked up
fragments of pre-existing forearc mantle during

ascent, demonstrating that SEMFR lavas formed
long after subduction initiation. Post-magmatic
activity (<2.7 Ma) shapes the S. Mariana forearc
lithosphere (Fig. 9¢) and formed the NNW-SSE
trending rifts of the SEMFR, as we know it today
(Figs 9d,10d).

CONCLUSIONS

Two important conclusions can be drawn from this
study: i) SEMFR magmas formed by adiabatic
decompression in the southernmost IBM foreare,
usually underlain by cold, serpentinized harzbur-
gitic mantle that rarely melts (Reagan et al. 2010);
and (ii) SEMFR lavas were produced by melting
of fertile asthenospheric mantle metasomatized by
slab-derived fluids, long after subduction initiation,
allowing development of a forearc lithosphere. Our
results show that the southernmost Mariana
forearc stretched to accommodate opening of the
Mariana Trough to form the SEMFR, allowing
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Fig. 10 3D model of geodynamic evolution of the SEMFR drawn after the SE Mariana lithospheric section of Gvirtzman and Stern (2004) and the
tomographic images of Miller et al. (2006a). The cross section is drawn from the area highlighted by a red box in Figure 9. BAB lithos., backarc basin
lithosphere. (a) Opening of the S. MarianaTrough, the Malaguana—Gadao Ridge (MGR), stretches the pre-existing Eocene forearc lithosphere ~5 Ma ago.
(b) Rupturing of the forearc allows mantle melting, creating new SEMFR oceanic crust ~2.7—3.7 Ma. The red line shows the location of the cross section
of SEMFR shown in c. (c) Continuous dehydration of the shallow downgoing slab controlled SEMFR magmatic activity, and SEMFR had ridge morphology

~2.7-3.7 Ma. (d) Today, post-magmatic rifting dominates SEMFR.

hydrated, asthenospheric mantle to flow into the
forearc and to produce new oceanic crust at
~2.7-3.7 Ma. SEMFR lavas formed by adiabatic
decompression of depleted backarc mantle at
~23 * 6.6 km depth and 1239 =+ 40°C. The SEMFR
at 2.7-3.7 Ma was likely a ridge-like spreading
center, where the slab-derived fluids enhanced
mantle melting beneath the forearc. Today, the
SEMFR is no longer magmatically active and
amagmatic extension shapes its morphology.
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Supporting Information S1: Description of the
dives.

Fig. S1.1 Cross sections of SEMFR rifts 1, 2 and 3
from the trench.

Fig. S1.2 Dive tracks of Shinkai dives 1096, 1230
and 1235 and deep-tow camera 82.
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Fig. S1.3 Dive tracks of YKDT 85, 86, 87 and 88.
Fig. S1.4 Dive tracks of Shinkai dive 973 from
YKO06-12 cruise report and Kaiko dive 163 from
KRO00-03 Leg 2 cruise report.

Fig. S1.5 Interpreted bathymetric profile of the
eastern flank of rift 1 traversed during Shinkai
dive 1096.

Fig. S1.6 Interpreted bathymetric profile of the
eastern flank of rift 2 traversed during Shinkai
dive 1230.

Fig. S1.7 Interpreted bathymetric profile of the
eastern flank of rift 3 traversed during Shinkai
dive 1235.

Fig. S1.8 Interpreted bathymetric profile of the
eastern flank of rift 1 traversed during Shinkai
dive 973.

Fig. S1.9 Interpreted bathymetric profile of the
summit of ridge on the eastern side of rift 3 tra-
versed during YKDT-85.

Fig. S1.10 Interpreted bathymetric profile of the
eastern flank of ridge of rift 3 (central part of
SEMFR) traversed during YKDT-86.

Fig. S1.11 Interpreted bathymetric profile of
YKDT-82, performed on the summit of a ridge
between rifts 2 and 3

Fig.S1.12 Interpreted bathymetric profile of
the axial valley of rift 3 traversed during YKDT-
87.

Fig. S1.13 Interpreted bathymetric profile of the
eastern flank of ridge of rift 2 performed during
YKDT-88.

Fig. S1.14 Interpreted bathymetric profile of Toto
caldera performed during Kaiko dive 163.

Fig. S1.15 Interpreted bathymetric profile along
the Malaguana-Gadao Ridge (MGR) performed
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during Kaiko dive 164, near the 13°N magmatic
chamber.

Table S1.1 Longitude and latitude of the dives in
the SEMFR, MGR and Toto caldera with their
depth and trench distance.

Table S1.2 Variation of the width and depth (km)
of the three SEMFR rifts along axis.

Supporting Information S2 Sample selection and
analytical techniques.

Fig. S2.1 Location of the analyzed samples, for
major elements during this study, on the bathymet-
ric profiles of the Shinkai dives 1096, 1230 and 1235.
Supporting Information S3 Method for describ-
ing the samples.

Supporting Information S4 Petrographic des-
cription and mineralogy of the samples.

Fig. S4.1 SEMFR mineral compositions in cli-
nopyroxene, plagioclase and olivine.

Table S4.1 Representative mean clinopyroxene
composition.

Table S4.2 Representative mean plagioclase com-
position.

Table S4.3 Representative mean olivine composi-
tion.

Table S4.4 Representative mean spinel composi-
tion.

Supporting Information S5 Correlation between
mineral abundances and whole rock chemistry.
Fig. S5.1 Plot showing the correlation between
mineral abundances and whole rock composition.
A) The olivine proportions are positively corre-
lated to the whole rock Mg#.

Supporting Information S6 Effects of the varia-
tions of the Fo content on the P-T conditions of
SEMFR mantle melting.



