CRUISE REPORT

JAPAN MARINE SCIENCE AND TECHNOLOGY CENTER

R/V YOKOSUKA YK04-05 LEG 4 CRUISE

COMPOSITION AND CRUSTAL STRUCTURE OF THE EARLIEST ARC CRUST: A SUBMERSIBLE STUDY OF THE WESTERN FLANKS OF THE OGASAWARA RIDGE

MAY 24, 2004 TO JUNE 1, 2004

(HACHIJO-JIMA, JAPAN TO ITO, JAPAN)

List	t of cruis	e personnelii
Ack	knowledg	ementsv
Sun	nmary	vi
1. I	ntroduct	ion1
2. 6	Geodynar	nic background1
3. C	Objective	s of the cruise2
4. R	Running	Cruise narrative6
5. C	Operation	ns and data processing10
	5.1	DSV Shinkai 650010
	5.2	Bathymetric data10
	5.3	Gravity data10
	5.4	Magnetics data10
6. 5	Scientific	Results
	6.1	Bathymetric surveys15
	6.2	Submersible studies
		6.2.1 Dive 6K#823 at 28°10'N15
		6.2.2 Dive 6K#824 at 28°10'N16
		6.2.3 Dive 6K#825 at 28°10'N17
		6.2.4 Dive 6K#826 at 28°10'N
	6.3	Descriptions of rock samples18
		6.2.1 Dive 6K#823
		6.2.2 Dive 6K#82419
		6.2.3 Dive 6K#825
		6.2.4 Dive 6K#826
7. 1	Future w	ork

TABLE OF CONTENTS:

8. References

Appendices:

Appendix A: Video logs for dives 823, 824, 825, 826	28
Appendix B: X-Y coordinates for dives	34
Appendix C: Descriptions of samples	38
Appendix D: Sample distribution list	42
Appendix E: Photographs of samples	43

LIST OF CRUISE PERSONNEL:

Science

Dr. Yasuhiko Ohara, co-chief

Hydrographic and Oceanographic Department of Japan 5-3-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan Tel: 81-3-3541-4387 Fax: 81-3-3541-3870 E-mail: ohara@jodc.go.jp

Dr. Sherman H. Bloomer, co-chief Geosciences Department, Oregon State University 128 Kidder Hall, Corvallis, OR 97331, USA Tel: 1-541-737-3877 Fax: 1-541-737-1009 E-mail: sherman.bloomer@oregonstate.edu

Dr. Teruaki Ishii

Ocean Research Institute, University of Tokyo 1-15-1 Minamidai, Nakano, Tokyo 164-8639 Tel: 81-3-5351-6447 Fax: 81-3-5351-4645 E-mail: ishii@ori.u-tokyo.ac.jp

Dr. Jun-ichi Kimura

Department of Geological Sciences, Shimane University 1060 Matsue, Shimane 090-8504, Japan Tel: 81-852-32-6462 Fax: 81-852-32-6469 E-mail: jkimura@shimane-u.ac.jp

Dr. Osamu Ishizuka

Geological Survey of Japan, AIST Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan Tel: 81-29-861-3828 Fax: 81-29-856-8725 E-mail: o-ishizuka@aist.go.jp

Dr. Satoru Haraguchi Ocean Research Institute, University of Tokyo 1-15-1 Minamidai, Nakano, Tokyo 164-8639 Tel: 81-3-5351-6447 Fax: 81-3-5351-4645 E-mail: haraguti@ori.u-tokyo.ac.jp

Dr. Shiki Machida Ocean Research Institute, University of Tokyo 1-15-1 Minamidai, Nakano, Tokyo 164-8639 Tel: 81-3-5351-6447 Fax: 81-3-5351-4645 E-mail: machida@ori.u-tokyo.ac.jp

Mr. Yi Bing Li

Ocean Research Institute, University of Tokyo 1-15-1 Minamidai, Nakano, Tokyo 164-8639 Tel: 81-3-5351-6447 Fax: 81-3-5351-4645 E-mail: liyibing@ori.u-tokyo.ac.jp

Dr. Robert J. Stern

Geosciences Department, University of Texas at Dallas Box 830688, 2601 N. Floyd Rd., Richardson, TX 75083, USA Tel: 1-972-883-2442 Fax: 1-972-883-2537 E-mail: rjstern@utdallas.edu

Dr. Mark K. Reagan

Department of Geoscience, University of Iowa 10 Glendale Court, Iowa City, IA 52242, USA Tel: 1-319-335-1802 Fax: 1-319-335-1821 E-mail: mark-reagan@uiowa.edu

Dr. Katherine A. Kelley

Department of Terrestrial Magnetism, Carnegie Institution of Washington 5241 Broad Branch Rd. NW, Washington, DC 20015, USA Tel: 1-202-478-8475 Fax: 1-202-478-8821 E-mail: kelley@dtm.ciw.edu

Mr. Ulysses S. Hargrove III

Geosciences Department, University of Texas at Dallas Box 830688, 2601 N. Floyd Rd., Richardson, TX 75083, USA Tel: 1-972-883-2454 Fax: 1-972-883-2537 E-mail: ushgeo@utdallas.edu

Mr. Matthew Wortel

Department of Geoscience, University of Iowa 10 Glendale Court, Iowa City, IA 52242, USA Tel: 1-319-335-1802 Fax: 1-319-335-1821 E-mail: matthew-wortel@uiowa.edu

Dr. Tetsuya Miwa, ad hoc (biologist for the next leg)

Nippon Marine Enterprises, Ltd. 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan Tel: 81-46-867-9676 Fax: 81-46-866-6364 E-mail: miwat@jamstec.go.jp

Mr. Toru Kodera, onboard marine technician

Nippon Marine Enterprises, Ltd. 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan Tel: 81-46-865-6803 Fax: 81-46-865-65031 E-mail: kodera@nme.co.jp

Ship crew

Mr. Sadao Ishida, Captain

Mr. Takafumi Aoki, Chief Officer Mr. Akihisa Tsuji, Second Officer Mr. Masaki Hayashi, Third Officer

Mr. Eiji Sakaguchi, Chief Engineer Mr. Akimitsu Fukuda, First Engineer Mr. Koichiro Okinagi, Second Engineer Mr. Daisuke Gibu, Third Engineer

Mr. Hideyuki Akama, Chief Radio Officer Mr. Hidehiro Ito, Second Radio Officer

Mr. Yasukichi Kyuki, Boatswain Mr. Kuniharu Kagoguchi, Able Seaman Mr. Katsuhiko Sato, Able Seaman Mr. Yasuo Konno, Able Seaman Mr. Kengo Fujino, Able Seaman Mr. Tetsuo Shirayama, Able Seaman Mr. Shozo Fujii, Able Seaman Mr. Seiichi Matsuda, No. 1 Oiler Mr. Yoshiyuki Ito, Oiler Mr. Kozo Miura, Oiler

Mr. Toshikazu Ikeda, Assistant Oiler

Mr. Tomoyuki Hashimoto, Oiler

Mr. Kyoichi Hirayama, Chief Steward Mr. Shinsuke Tanaka, Cook Mr. Isao Matsumoto, Cook Mr. Toyonori Shiraishi, Cook Mr. Hirohito Miyakawa, Cook

Shinkai operation team

Mr. Yoshiji Imai, Operation Manager

Mr. Toshiaki Sakurai, Assistant Operation Manager

Mr. Tsuyoshi Yoshiume, 1st submersible staff

Mr. Kazuki Iijima, 1st submersible staff

Mr. Yoshinobu Nanbu, 1st submersible staff

Mr. Kazuhiro Chiba, 1st submersible staff

Mr. Fukuo Suda, 1st submersible staff

Mr. Yoshinari Ono, 1st submersible staff

Mr. Masanobu Yanagitani, 2nd submersible staff Mr. Keita Matsumoto, 2nd submersible staff

Mr. Katsushi Chiba, 3rd submersible staff

ACKNOWLEDGEMENTS

We are grateful to captain Sadao Ishida, the Shinkai operation team manager Yoshiji Imai, the crew of R/V Yokosuka, and the Shinkai team for their outstanding efforts to make this scientific program successful. We also thank JAMSTEC for their support of this project. The U.S. science group acknowledges the support of a National Science Foundation grant to the University of Texas at Dallas. Most of the expendable supplies used in the cruise were provided from the Hydrographic and Oceanographic Department of Japan.

SUMMARY:

We conducted four dives using DSV Shinkai 6500 and completed associated geophysical mapping along the western slopes of the Ogasawara Ridge in the forearc of the Izu-Bonin subduction during Leg 4 of cruise YK04-05 aboard R/V Yokosuka. The ship left Hachijo-Jima, Japan, on Monday, May 24, 2004 and returned to Ito, Japan on June 1, 2004.

We completed a bathymetric map of the entire western escarpment of the Ogasawara Ridge and much of its northern extension and identified the major morphologic features of the ridge. A pronounced northwest-southeast fabric is superimposed on the overall north-south trend of the ridge.

The scarp of the Ogasawara Ridge can be subdivided into a northern segment, a central segment (lying about 15 km east of the southward projection of the northern escarpment), and a southern segment. The northern segment is associated with a narrow ridge which trends 010° and is surmounted by relatively small, discrete conical features that could be the remnants of old volcanoes. Dives 823, 824, and 825 were carried out on the northern segment. These dives mapped exposures of debris flows and associated sedimentary rocks, some pillowed volcanic outcrops, and Mn-crusts and nodules. Dives 823 and 824 were on north-south, west facing scarps and samples from these dives had very thick (to 10 cm) manganese rinds. Dive 825 was below and up a very steep fault scarp with a northwest trend, and these samples were only lighted coated with manganese. Clasts in the debris flow are mafic, andesitic, and rarely dacitic. Many of the clasts were abraded or rounded, suggesting that they were redeposited as gravity flows, as opposed to being primary volcanic deposits. The debris flow samples are very similar to rocks described in the Mikazukiyama formation of Eocene to Oligocene age in the northwest part of Chichijima. The type of volcanic clasts, absence of boninites, and presence of an unconformity with underlying Eocene boninites suggest that these debris flows may be a volcanic deposit overlying the Eocene exposures of Chichi-jima. These exposures may represent a portion of a substantial but previously unrecognized Oligocene volcanic arc in this part of the Izu-Bonin system.

Dive 826 occurred on the central segment NNW of Chichi-jima. This dive recovered mafic volcanic rocks, sediments, and limestones, including samples with large foraminifera tentatively identified as *Nummulites*. The Nummulitic limestone is quite thick and is apparently interbedded between boninitic pillows. This result establishes the crustal section here to be of Eocene age, and documents the contrast between the rocks of the Chichi-jima platform and those of the northern segment.

These results show that the Eocene section is likely dipping gently to the west or northwest and that the western scarps expose potentially younger Oligocene rocks northwards along the platform. The lower volcanic section and dikes are not exposed along the western escarpment. Samples of these lower crustal forearc units may only be exposed on the large fault scarps south and southeast of Guam; drilling may be required to constrain the composition of those units.

INTRODUCTION:

Understanding the initiation of subduction and the tectonic significance of ophiolites are important geoscientific problems that are intimately related. Recent studies of the Izu-Bonin-Mariana forearc demonstrate that early arc volcanism was characterized by distinctive igneous rocks, including boninite, depleted arc tholeiite, and associated plutonic rocks, that are now preserved in the forearc. The dredged plutonic rocks, particularly when compared to plutonic rocks from back-arc basins and the arc itself, are compositionally similar to seafloor that forms above subduction zones (suprasubduction zone ophiolites), but where exactly in the arc these form is controversial. The diving program that we proposed addressed issues about the earliest history of the Izu-Ogasawara subduction zone.

In recognition of the importance of these problems and because the IBM arc system has become a focus for research about subduction initiation and the significance of ophiolites, the 2002 joint JAMSTEC-NSF MARGINS (Honolulu) workshop on the IBM system recommended that the deeper forearc crust be characterized through field studies, studies of existing dredged samples, and drilling. Our objective on this cruise was to use Shinkai 6500 to study exposures along the steep, western scarp of the Ogasawara (Bonin) Islands, created by uplift and faulting of the forearc. The Shinkai 6500 dives allowed observations and sampling of approximately 3 km of relief to complement the 500 m of exposure on Chichi-jima. Our initial hypothesis suggested the possible exposure of sheeted dikes and isotropic gabbros on the fault scarp. The samples and observations will be used to constrain the early history of the Izu-Bonin arc.

2. GEODYNAMIC BACKGROUND:

The outer forearc of the Izu-Bonin- Mariana system has been studied extensively. Work in the region includes dredge and drill sampling of the forearc basement, studies of the geology and geochemistry of the exposures on the Bonin Islands, and surveys of the Bonin Platform.

The islands of the Bonin platform have been well studied. Boninites were first described from the island of Chichi-jima (Suzuki, 1885; Kikuchi, 1890; Petersen, 1891) and many workers have studied the geology and geochemistry of the islands (Umino, 1985; , 1986a, 1986b; Vidal et al., 1985; Yajima and Fujimaki, 2001; Taylor et al., 1994; Shiraki et al., 1978; Shiraki et al., 1980; Satake et al., 1984; Maruyama and Kuramoto, 1981; Komatsu, 1980; Kuroda and Shiraki, 1975; Kuroda et al., 1978; Kuroda, 1984; Kuroda et al, 1988; Dobson, 1986; Dobson and O'Neil, 1987; Dobson and Tilton, 1989). There have been fewer studies of Haha-jima and Muko-jima (Iwasaki and Aoshima, 1970; Taylor, 1994; Haraguchi et al., in preparation), but those are sufficient to characterize the principal geologic character of the platform. The Chichi-jima and Muko-jima groups comprise large quantities of boninites and related andesites and dacites. On Chichi-jima, the Marubewan, Asahiyama, and Mikazukiyama Formations expose over 500 m of boninite flows, volcanic breccias, felsic lavas, and tuffaceous sediments. The age of the formations is 42-51 Ma (Hanzawa, 1947; Kaneoka et al., 1970; Matsumaru, 1976; Meijer et al., 1983; Shibata et al., 1984; Dobson, 1986; Yoshiwara, 1902; Tsunakawa, 1983). NNE trending

dikes cut the eastern side of Chichi-jima. The formations on the eastern side of the island dip gently westward (Umino, 1985, 1986a, Dobson, 1986). The formations appear to be more flat-lying in the central part of the island and in places on the western side dip slightly to the east. Detailed geologic mapping of Chichijima (including tracing every flow and volcaniclastic unit flow-by-flow and bed-by-bed in the field) has documented very detailed, precise structures of the strata. Open folds prevail over the Bonin Islands with NNW-SSE-striking axes and a wave length of approximately 8 km, a part of which can be ascertained from cross sections (Umino, pers. comm.; Umino and Iwano, 1992). The anticlines run through Minamijima Island and the strait between Chichijima and Higashijima. An axis of anticline also runs along the western side of Hahajima Island. The strata are gently undulated and expose virtually the same stratigraphic level throughout the Bonin Ridge, supporting the inference of lower crustal exposures on the faulted western flanks of the Ridge. The Haha-jima group, and the escarpment to its west expose mostly low-Mg and high-Mg arc tholeiites, rather than boninites (Taylor et al., 1994; Haraguchi, 1999).

The forearc of the Izu-Bonin system has been extensively surveyed, although that work was done largely with an older 16-beam Seabeam system, yielding 30-40% coverage of the seafloor. There has been some sampling of the western escarpment (Ishii, 1985; Haraguchi, 1999). These dredges recovered large volumes of low- and high-Mg tholeiites, similar to the exposures in the Haha-jima group. The nature of dredged samples precludes determining if the samples were from flows, dikes, or other morphologies. Dredge KT95-9 D17 recovered hyaloclastite sediments and small gabbroic pebbles, suggesting there is some at least local exposure of coarser grained rocks. A number of the dredges also recovered only sediment, which is not surprising given the proximity to the thick volcaniclastic fill of the Bonin Trough.

There is also extensive sampling of the Izu and Mariana forearcs to provide comparative data for the Bonin segment of the IBM forearc. Work in the Marianas system includes dredging from south of Guam to 22°N (Bloomer, 1983; Bloomer and Hawkins, 1983; Stern et al., 1991) and DSDP Sites 458 and 459 (Bougault et al., 1981; Hickey and Frey, 1982; Hickey-Vargas, 1989; Hussong and Uyeda, 1981a, 1981b; Natland and Tarney, 1981;). The most relevant sampling in the Izu forearc is ODP Sites 782, 783, 784, 785, 786 and 787 (Arculus et al., 1992; Clift, 1995; Fryer et al., 1990; Fujioka et al., 1992; Hiscott and Gill, 1992; Mottl, 1992; Murton et al., 1992; Parkinson et al., 1992; Pearce, Thirwall, et al., 1992; Pearce, Van Der Laan, et al., 1992; Van Der Laan et al., 1992; Taylor, Fujioka, et al., 1992; Taylor et al., 1992; Van Der Laan et al., 1992). There have also been studies of the forearc exposures on Guam and Saipan (Hickey-Vargas and Reagan, 1987; Meijer, 1980, 1983; Reagan and Meijer, 1984)

3. OBJECTIVES OF THE CRUISE:

Subduction of oceanic lithosphere is the primary contributor to the global mass and chemical flux between the lithosphere and the deeper mantle and provides the source of a significant proportion of the world's volcanism (Stern, 2002). In spite of this importance, we have much to learn about how subduction zones operate, including how new subduction zones begin. Forearcs are an integral part of intraoceanic convergent margins and sediment-free forearcs like those of the IzuBonin-Mariana (IBM) system preserve the best record of the early stages in the evolution of the convergent plate margin. Recent studies of the IBM forearc have raised a number of important new hypotheses about the evolution of intraoceanic arc systems. The first, and most striking, is the recognition that the forearc basement formed in the initial phases of volcanism in these subduction zones (middle to late Eocene) nearly synchronously over a zone up to 300 km wide and thousands of kilometers long, at igneous production rates much higher than those of mature arcs and similar to those of slow-spreading ridges (Figure 1; Stern and Bloomer, 1992; Bloomer et al., 1995).

The IBM forearc crust exposes one of the best known recent analogs for ophiolites. The chemical signature of most ophiolites indicate that they must have formed at a convergent plate margin and so are termed 'supra-subduction zone (SSZ) ophiolites'.

Fig. 1. Evolution of the IBM arc after subduction initiation (from Stern et al., 2002). We think that ophiolites form during stage A and are preserved in the IBM forearc.

Most scientists think that SSZ ophiolites originate in back-arc basins because this is the only modern geotectonic environment where the compositional and structural constraints can be satisfied. The duration of volcanism, volcanic and plutonic rock compositions, and structural setting of the IBM forearc are virtually identical to those of the best preserved ophiolites, and this observation leads us to conclude that SSZ ophiolites mostly form in forearc environments (Bloomer et al., 1995) during the early stages of subduction.

Previous studies of the IBM system lead to hypotheses that have important implications for mass and energy balances at convergent margins. These hypotheses suggest that the earliest arc magma production was different in rate and composition than that of the mature IBM arc and that the early arc crust is an important part of the bulk composition of the system. These much higher rates required extension and a sea-floor spreading type mechanism. This hypothesis must be tested further; in particular we need to better understand forearc crustal structure and composition. The importance of this research is reflected in the recommendations of the 2002 joint JAMSTEC-NSF MARGINS workshop on the IBM system, which strongly encouraged the study of early arc volcanism and the characterization of the lower crustal composition of the forearc through field studies, studies of existing dredged samples, and drilling.

This cruise took advantage of exposures along the steep, western side of the Ogasawara (Bonin) Ridge, created by uplift and faulting of the forearc (initially in Eocene time, and likely modified in the Oligocene), where a 3 km tall section of forearc crust is exposed (Figure 2, Taylor, 1992). The capabilities of Shinkai 6500 allowed observations and sampling of the entire section to complement the 500 m section of Eocene lavas exposed on Chichi-jima and other Bonin islands. We completed four dives on the steep western escarpment, though the position of those dives was shifted somewhat due to concerns about the long term weather forecast and the available survey data. We also completed a survey of the western flanks of the entire Ogasawara Ridge. This work focused on testing two key hypotheses:

- The rock assemblages preserved in the IBM and other intraoceanic forearcs are a better analog for ophiolites than those that form at mid-ocean ridges or back-arc basins.
- Forearc crust is produced when subduction begins. The initial stages in the formation of a subduction zone are associated with seafloor spreading in the overriding plate. Unusual magmas are produced at rates much higher than those associated with mature arcs.

Combined with the work on the islands and previous dredge sampling, our work will help establish how uniform the crustal structure of the platform is. If MORB material is entirely lacking, it is strong evidence that the early arc volcanism proceeded at a rate and in a style that made it possible to remove most of the preexisting crust. The distribution and volumes of boninitic and tholeiitic lavas along the escarpment will have important implications for the nature of the mantle that existed at the earliest phases of subduction.

Verification of these hypotheses by our work will test parts of the model of early arc volcanism as the progenitor of supra-subduction zone ophiolites. The validation of that model has ramifications for modern marine geology and for the interpretation of ophiolites in the geologic record. It would be a fundamental contribution to earth science and set the stage for deep scientific drilling.

Figure 2: Area of operations for YK04-05 Leg 4

4. RUNNING CRUISE NARRATIVE

Our initial dive plan was to spend the first 36 hours of the cruise proceeding south along the escarpment, collecting multibeam data along the track, to our first dive on the steep scarps west of Chichi-jima. However, concerns about the weather conditions and a potential low pressure front led us to move our first dive to May 25th, instead of May 26th, which required completing our first dive at the northernmost site, after cursory survey work. The second dive was moved northwards, based upon the identification of very steep scarps in our initial surveying. We adjusted our science plan to survey southwards each evening, returning to the next day's dive site by 0700.

Local Time (appro All times in Japan	DescriptionNotesStandard Time
May 24, 2004	YK-04-05 begins; Hachijo-jima, Japan; ship steams SSW to north end of Ogasawara escarpment
0930	Scientists aboard by boat, west side of island (Yaene port); depart for northern end of Ogasawara Ridge at 15 kts
1100-1130	Meeting to discuss ship's rules with Chief Officer and Chief Radio Officer
1200	Efforts to initialize GeoCompass; source code missing
1300-1315	Fire and boar drill at the upper deck
1400-1430	Meeting with Shinkai submersible team
1500-1600	Orientation for scientists participating in submersible observations
1640	Ceremony on bridge to begin cruise ("Konpira-san" ceremony)
1900	Science meeting
2220	Geophysical mapping started (entering south of 30°N)
May 25, 2004	Shinkai 6500 Dive 823 conducted on the western flanks of Ogasawara Ridge at 28°10'N. After recovery, M/V Yokosuka proceeded to survey between 27°40'N and 28°40'N, to prepare for Dive 824
0555	Arrived at Dive 823 launch point
0600	XBT was deployed
0953	Dive 823 started (Shinkai opened vent); Sherman Bloomer as observer
1144	Shinkai on bottom (3771 meters)
1551	Shinkai off bottom (2766 meters); rocks sampled at 8 locations
1653	Shinkai on surface
1800	Yokosuka underway for next survey points
1910-2000	Science meetings
1800-2200	Scientists work on rock description, video archiving
May 26, 2004	Shinkai 6500 Dive 824 conducted on the western flanks of Ogasawara Ridge at 28°32'N. After recovery, M/V Yokosuka proceeded to survey between 27°30'N and 28°40'N, to prepare for Dive 825

0640 0950 1114 1622 1701 1800 2000-2030 1700-2200	 Arrived at Dive 824 launch point Dive 824 started (Shinkai opened vent); Satoru Haraguchi as observer Shinkai on bottom (2889 meters) Shinkai off bottom (1721 meters); rocks sampled at <u>9 locations</u> Shinkai on surface Yokosuka underway for next survey points Science meetings Scientists work on rock description, video archiving
May 27, 2004	Shinkai 6500 Dive 825 conducted on the northwest trending scarp on western flanks of Ogasawara Ridge at 28°40'N. After recovery, M/V Yokosuka proceeded to survey between 27°40'N and 28°40'N, to prepare for Dive 826
0620 0949	Arrived at Dive 825 launch point Dive 825 started (Shinkai opened vent); Mark Reagan as
1058 1623 1659 1800 2010-2030 1800-2200	 Shinkai on bottom (2301 meters) Shinkai off bottom (1579 meters); rocks sampled at 9 locations Shinkai on surface Yokosuka underway for next survey points Science meetings Scientists work on rock description, video archiving
May 28, 2004	Shinkai 6500 Dive 826 conducted on the western flanks of Ogasawara Ridge at 27°20'N, NNW of Chichi-jima. After recovery, M/V Yokosuka proceeded to survey the western flanks of the Ogasawara Ridge between 27°20'N and 26°10'N
0730 0955	Arrived at Dive 826 launch point Dive 826 started (Shinkai opened vent); Yasuhiko Ohara as observer
1054 1617 locations	Shinkai on bottom (1750 meters) Shinkai off bottom (705 meters); 21 rocks sampled at 11
1652 1730 2000-2045 1800-2200	Shinkai on surface Yokosuka underway for next survey points Science meetings Scientists work on rock description, video archiving
May 29, 2004	M/V Yokosuka proceeded to survey the western flanks of the Ogasawara Ridge between 27°20'N and 26°10'N; work continues curating samples and video records
0819-0831	Figure eight maneuvering was done for calibration of the three- component magnetometer

May 30, 20004	M/V Yokosuka proceeded to survey the northern end of the Ogasawara Ridge between 28°30'N and 29°30'N; work continues curating samples and video records
0900-1000 1030 1100-2200 1300 1800 1900	Science presentations to crew by Ishii, Ohara and Bloomer Sampling party for scientific party Scientists work on sample curation, cruise report Group photograph of scientific, ship, and Shinkai crew Depart survey area for Ito, Japan. Survey work completed. Recpetion in mess for ship's party
May 31, 2004	M/V Yokosuka enroute to Ito harbor @ 15 knots; scientists completing curation and descriptions of samples, video archiving, and cleaning of laboratories
0952-1004	Figure eight maneuvering was done for calibration of the three- component magnetometer (off Hachijo-jima)
June 1, 2003	Yokosuka Cruise 04-05 Leg 4 ends
0900	Yokosuka anchored in Ito, Japan; scientific party disembarks

Table 1. Weather Conditions during the YK04-05 Leg 4 Cruise

Local Time	Weather/wind and (sea condition) at noon						
May 24, 2004	c/NNE 4 (2)						
May 25, 2004	o/NNE 3 (3)						
May 26, 2004	c/ENE 4 (3)						
May 27, 2004	bc/NE 4 (3)						
May 28, 2004	bc/NE 2 (2)						
May 29, 2004	bc/ENE 2 (1)						
May 30, 2004	bc/NE 3 (2)						
May 31, 2004							
June 1, 2004	-						
Weather:	b: Blue sky (Cloud 0-2); bc: Fine but Cloudy (cloud 3-7); c: Cloudy (Cloud 8-10); d: Drizzling Rain; r: Rain; q: Squalls; o: Overcast (Cloud 10)						
Wind:	0: 0-0.2 m/sec; 1: 0.3-1.5 m/sec; 2: 1.6-3.3 m/sec; 3: 3.4-5.4 m/sec; 4: 5.5-7.9 m/sec; 5: 8.0-10.7 m/sec; 6: 10.8-13.8 m/sec; 7: 13.9-17.1 m/sec; 8:17.2-20.7 m/sec; 9: 20.8-24.4 m/sec; 10: 24.5-28.4 m/sec; 11: 28 5-32 6 m/sec; 12: more than 32 6 m/sec						
Sea Condition	 :0: Calm (Glassy); 1: Calm (Ripped); 2: Smooth (Wavelets); 3: Slight; 4: Moderate; 5: Rough; 6: Very rough; 7: High; 8: Very high; 9: Phenomena 						

5. OPERATIONS AND DATA PROCESSION:

Waypoints for the survey lines employed during the YK03-09 cruise are listed in Table 2. Figure 3 shows the survey lines and way points.

5-1. DSV Shinkai 6500

DSV Shinkai 6500 is one of the finest manned submersibles in the world. The operational characteristics of the submersible are described elsewhere.

5-2 Bathymetric Data

Bathymetric data were collected using the SeaBeam 2112 system deployed on M/V Yokosuka. The SeaBeam system uses sound velocity data from XBT data not only for calculating the depth and position of each beam during the ray tracing process, but also for the beam forming process. The sound velocity of the surface layer is very important for this step, so the system measures and uses these surface velocities in real time. Except for the surface layer, data from a CTD installed in the Shinkai 6500 were used for calculating sound velocities (Tables 3). We used XBT data for calculating sound velocities on May 23. The quality of the obtained bathymetry depends mostly on the sea state.

We conducted swath surveys along the western scarp of the Ogasawara Ridge and the northern limits of the Ridge. Two survey lines were completed in the forearc, southwest of Hahajima. Additional data were collected in transit from Hachijo-jima and to Ito. Survey lines and way point locations are shown in Figure 3.

5-3 Gravity data

Gravity data was collected during YK04-05 Leg 4, though it was not processed on board.

5-4 Magnetics data

Three-component magnetometer data (Hx, Hy, Hz) was collected during our survey lines using an SFG-1214 magnetometer (Terra Tecnica Inc.). To determine the effect of the ship's mangetication, we carried out two figure eight tracks towards the southernmost and northernmost limits of our survey (about 26°40'N and 29°30'N; Table 2). Data were collected during our surveys, but no processing was done on board.

The proton magnetometer was not deployed during the cruise.

W D • 4	T 10	.	Lon°	т.	Day	Hour	Minute	
Way Point	Lat ^o	Lat'		Lon'		UTC (May, 2004)		Note
0	30	38.7	140	49.8	24	13	20	From Hachijo; SVP1 (May 24, 0:41-21:20, UTC)
1	28	48.5	141	44.5	24	18	28	
2	28	39.5	141	46.8	24	19	4	
3	28	10.4	141	48.1	24	22	54	SVP2 (May 24, 21:20-May 25, 9:05, UTC), using XBT; Dive # 823
(3)	28	10.4	141	48.1				Dive # 823 end point
4	28	10.4	141	52.5	25	8	55	SVP3 (May 25, 9:05-end of the cruise, UTC)
5	28	35	141	52.5	25	10	44	
6	28	35	141	48.1	25	11	3	
7	28	38	141	48.1	25	11	20	
8	28	38	141	52.5	25	11	49	
9	28	38	141	56.5	25	12	10	
10	27	40	141	56.5	25	17	0	
11	27	40	141	48.1	25	17	32	
12	28	8	141	48.1	25	19	46	
13	28	8	141	44	25	20	0	
14	28	30	141	44				Short-cut?
15	28	37	141	48.5	25	21	38	Dive # 824
(15)	28	37	141	48.5	26	8	48	Dive # 824 end point
16	28	35.8	141	54.09	26	9	4	
17	28	29.37	141	54.33	26	9	28	
18	28	29.37	141	50.11	26	9	40	
19	28	14	141	50.11	26	10	46	
20	28	8	141	52	26	11	14	
21	27	43.5	141	52	26	13	17	
22	27	43.5	142	1	26	14	12	
23	27	41.3	142	2	26	14	28	
24	27	41.3	142	0	26	14	39	
25	27	10	142	0	26	17	24	
26	27	10	142	4.5	26	17	42	
27	27	37	142	4.5	26	20	5	
28	27	42	141	55.7	26	20	50	Dive # 825
(28)	27	42	141	55.7	-			Dive # 825 end point
29	27	45.8	141	54.7	27	9	20	
30	27	45.8	142	1.5	27	9	45	
31	27	40.1	142	3.7	27	10	9	
32	27	36.9	142	6.3	27	10	29	
33	27	26	142	6.3	27	11	24	
34	27	26	142	1.3	27	11	55	
35	27	23.3	142	1.3	27	12	14	
36	27	23.3	142	6.3	27	12	46	

Table 2: List of survey lines and way points, YK04-05 Leg 4

Table 2 (continued)

War Daint	I = 40	T -4	I am0	Lant	Day	Hour	Minute	N=4-
way Point	Lat	Lat	Lon°	Lon		UTC (May, 2004)		Note
37	27	9	142	5	27	15	6	SeaBeam down during 13:46- 14:56
38	27	5	142	1	27	15	34	
39	27	5	141	58	27	15	47	
40	27	3	141	58	27	15	52	
41	27	3	142	2	27	16	13	
42	27	0.5	142	2	27	16	25	
43	27	0.5	141	58	27	16	41	
44	26	41	141	58	27	18	17	
45	26	41	141	54	27	18	34	
46	27	23.5	141	54	27	21	55	
47	27	23.6	142	3.5	27	22	5	Dvie # 826
(47)	27	23.6	142	3.5				Dive # 826 end point
48	27	27.15	141	52.3	28	9	5	-
49	27	34.2	141	52.3	28	9	32	
50	27	34.2	141	46	28	9	55	
51	27	23	141	45	28	10	49	
52	27	12	141	45	28	11	42	
53	27	4.7	142	4	28	13	12	
54	26	58.5	142	4	28	13	44	
55	26	58.5	142	1	28	13	57	
56	26	41	142	1	28	15	20	
57	26	37	141	57.5	28	15	45	
58	26	22.5	142	0	28	16	59	
59	26	16.5	142	3	28	17	31	
60	26	13	142	5	28	17	53	
61	26	15	142	10	28	18	17	
62	26	20	142	30	28	19	49	
63	26	20	142	47	28	21	3	
64	26	46	142	47	28	23	9	Figure 8 (23:19-23:31, UTC)
65	26	46	142	39	28	23	58	
66	26	27	142	39	29	1	32	
67	26	27	142	30	29	2	13	
68	26	19	142	7	29	4	5	
69	26	23.5	142	5	29	4	30	
70	26	38	142	1.5	29	5	47	
71	26	40	142	2.6	29	5	58	
72	26	56.5	142	3.2	29	7	21	
73	26	58.7	142	5.6	29	7	38	
74	27	6.3	142	4.7	29	8	15	
75	27	11.4	142	5.2	29	8	40	
76	27	12.8	142	2.6	29	8	56	
77	27	15.5	142	2.6	29	9	5	
78	27	22.1	142	5.4	29	9	40	
79	27	22.2	142	5.3	29	9	41	

Table 2 continued

Way Daint	I = 40	Lat'	Lat	L on 9	Loni	Day	Hour	Minute	Nata
way Point			Lon	LOI		UTC (May, 2004)		Note	
80	27	36.8	142	6.9	29	10	54		
81	27	36.8	141	55.4	29	11	43		
82	27	36.5	141	40	29	12	49		
83	28	2	141	40	29	12	52		
84	28	2	141	54.5	29	16	3		
85	27	47	141	54.5	29	17	24		
86	27	47	141	55.4	29	17	27		
87	28	2	141	55.4	29	18	32		
88	28	8	141	55	29	19	5		
89	28	8	142	1	29	19	32		
90	28	41.5	142	2	29	22	15		
91	28	41.5	141	51	29	23	2		
92	28	45	141	50	29	23	19		
93	28	45	141	58	29	23	53		
94	28	48.5	141	58	30	0	13		
95	28	53	141	50	30	0	52		
96	28	56	141	50	30	1	5		
97	28	58	141	57	30	1	39		
98	29	12	142	2	30	2	51		
99	29	22	142	5	30	3	41		
100	29	18	141	40	30	5	28		
101	29	34	141	32	30	7	4		
102	29	45	141	25	30	8	10		
103	29	47	141	25	30	8	21		
104	29	47	141	50	30	10	8		
105	29	32	141	50	30	11	19		
106	30	0	141	32.6	30	13	20	Figure 8 (May 31, 00:54-01:04, UTC at off the Hachijo Is.)	

SVP1	576stdv	SVP2	040524xbt_576stdv	SVP3	823_576stdv
Depth (m)	Velocity (m/s)	Depth (m)	Velocity (m/s)	Depth (m)	Velocity (m/s)
4.5	EXT	4.5	EXT	4.5	EXT
43	1542.0	20	1532.3	30	1524.7
52	1542.1	50	1522.3	80	1519.3
74	1542.0	80	1519.0	150	1515.9
113	1534.3	150	1516.9	260	1513.7
151	1527.0	200	1515.6	280	1511.0
242	1522.1	300	1511.7	350	1509.7
380	1516.0	400	1506.3	430	1503.1
478	1509.7	500	1498.8	630	1486.1
528	1507.5	700	1486.8	810	1481.3
579	1501.3	900	1482.3	880	1481.3
598	1498.3	1200	1482.8	1070	1480.8
657	1497.8	1800	1488.5	1500	1484.3
824	1486.6	2000	1490.7	2000	1490.2
1063	1483.9	2600	1499.6	2500	1498.0
1509	1484.9	3000	1506.5	3000	1505.7
1607	1486.1	3500	1514.8	3500	1514.4
1805	1488.2	4000	1523.1	4000	1523.1
2002	1490.7	4500	1532.4	4500	1532.4
2505	1497.9	4820	1538.1	4820	1538.1
3006	1506.7				
4001	1523.2				
5000	1541.3				
6000	1559.8				
7000	1578.5				
8000	1597.5				

Table 3. List of sound velocity profiles

Figure 3. Survey lines and waypoints for Cruise YK04-05 Leg 4 along the western escarpment of the Ogasawara Ridge

Ship did figure 8 off Hachijo-jima

6. SCIENTIFIC RESULTS

6-1 Bathymetric Survey

The preliminary Seabeam bathymetric map of the Ogasawara Ridge is shown in Figures 4 and 5. The ridge is bounded by a steep western scarp that is in turn cut by a prominent northwest fabric. The relative age of the two tectonic features is not known, though the northwest-trending fabric must be younger as it cuts the westfacing scarp. The central and northern ridge include a number of small circular to elongate highs. Given the dive observations of layering dipping away from these highs, it is possible that they are the remnants of volcanic centers.

The geophysical surveying yielded a comprehensive map of the western and northern margins of the Ogasawara Ridge. Interpretation of that data, informed by results of shore-based geochemical and geochronologic studies, will provide important geologic constraints on the geology of the Ridge.

6-2 Submersible studies

We conducted four dives during the cruise (Figures 6 and 7); a summary of the video records for those dives is included in Table 5 and short video logs are listed in Appendix A. Appendix B includes plots of the dive tracks for each dive, in X-Y units.

6-2-1 Dive 823, western scarp of Ogasawara Ridge at 28°10'N

The dive began when Shinkai reached bottom at 1137 at a depth of 3774 m. Shinkai headed ENE up a moderately dipping slope with scattered outcrop of tabular to rounded morphology; much of the area was sediment covered. The first half of the dive encountered principally this kind of terrane. Moderate to steep slopes exposed 40-70% outcrop typically with a tabular or slabby appearance. In places it clearly showed sedimentary layering. This layering usually dipped with the slope, though at a shallower angle (15-200) than the slope. Dip directions appeared to be most commonly to the SW or WSW, though some were W to WNW. Strike and dip directions of these outcrops need careful reexamination in the dive videos. Between the steep slopes exposing outcrop were sediment-covered benches, typically with less than 20% outcrop. All of the exposed rock surface were clearly covered with thick manganese oxy-hydroxide rinds. Samples 1-11 came from this portion of the slope. Those samples included volcaniclastic sandstones, volcanic breccias and conglomerates, and manganese nodules or rinds.

At 1420, at a depth of 3211 m, Shinkai encountered a near vertical scarp of about 50 m relief. Portions of the slope exposed outcrop much like that seen in the lower part of the dive, with a slabby to tabular morphology. However, in the lower part of this slope there were exposures of an irregularly vertically jointed rock that may have been a dike swarm. Further up this slope (about 1423) forms very similar to large pillow basalts could be seen. In places these appeared to be over one meter in length, in some cases with a somewhat tubelike form. At the top of the scarp the sediment covered a surface with low rounded forms, smaller than the pillow-like exposures in the scarp. Sampling was not possible while negotiating the vertical scarp and proved

difficult at the upper edge. As Shinkai moved a bit away from the edge of the scarp, the edge of a tabular outcrop was found that yielded samples 12, 13 and 14. These were polymict sandstones with thick Mn-rinds.

Two more exposures like this were encountered before the end of the dive. The first was about 80 m high (15:18-15:34). A review of the video showed large, pillow-like forms in the lower parts of the slopes, with smaller rounded forms and tabular, layered outcrop in the upper portions. The samples taken in all cases came from loose pieces on or near the slopes, since sampling from the large, pillow-like forms was difficult. All of those samples were of volcanic sandstones, breccias, or clasts from them. There was substantial discussion as to whether the large, rounded forms in these exposures could be pillows, or if they represent very large manganese oxyhydroxide growths.

6-2-2 Dive 824, western scarp of Ogasawara Ridge at 28°10'N

The dive started at 1114 AM at a depth of 2900 m. Shinkai headed up a 45° slope to about a depth of 2500 m. Below 2500m depth, the slope is intermediate and the bottom material is mainly light-colored sediment with some pebbles. Some basement is exposed. Sampling sites on this slope yielded mostly volcanic sandstones, although some rafted in pumice was also sampled. At 2500 m the slope steepened to $> 60^{\circ}$. A talus deposit was found at the break in slope. Sampling sites of this slope yielded volcanic conglomerates and breccias as well as angular to subrounded clasts of andesite and dacite. Above 2500m, the slopes are much and basement rocks are exposed and covered with some thin sediment and gravel. At the bottom of the steep escarpment, some debris deposits are found, and volcanic rocks are mainly recovered from this deposit. These volcanic rocks are 2-pyroxene basalt to andesite. Mn crusts above this depth. These shallow Mn crusts had botryoidal surfaces.

2899-2790m:

Intermediate slope covered with sediment and some rocks. Ripple marks (current mark?) were observed on the surface. We had two stops and recovered two rocks each other, These rocks are mud blocks with Mn crust.

2790-2580m:

Intermediate slope, covered with sediment and some rocks, debris deposits, and some mussive outcrops. We had two stops and recovered three (Stop 3) and four (Stop 4) rocks. At the former site, recovered rocks are pumice and scoria; volcanic rocks were recovered from the latter site. These are massive volcanic rocks.

2580-2330m:

Steep slope, massive outcrops with some pebbles and sediments, and debris deposits. We had two stops and recovered one (Stop 5) and three (Stop 6) rocks. These rocks are massive volcanic rocks.

2330-1990m:

Steep slope, massive outcrops with some pebbles and sandstomes, and debri deposits. We had two stops and recovered one (Stop 7) and three (Stop 8) rocks. These rocks are mumice and Mn crusts. Volcanic rocks were not recovered.

Shallower than 1990m:

Steep slopes, massive outcrops with some pebbles and sandstones. We had two stops and recovered one (Stop 9) and two (Stop 10) rocks. These rocks are Mn nodules.

6-2-3 Dive 825, western scarp of Ogasawara Ridge at 28°10'N

The dive started at 10:55 at a depth of 2320 m. Shinkai headed 045° up a broad ridge with a slope of 15-19° to a depth of 1915m. Nearly all of the sea-floor along this traverse was blanketed with sediment. An outcrop a few meters across was encountered at about 2300 m. It appeared to be finely laminated and indurated sedimentary rock standing above the modern sediment surface no more than several cm. Its dip was similar to that of the sea-floor surface. No sample was taken. At 2182 m (11:25) we encountered and collected an ellipsoidal rock about 30 cm in diameter. This turned out to be andesitic pumice. Sample 2, a 30 cm cobble of rhyolitic pumice with a size similar to rock 1, was taken at 1983 m. At 12:20, Shinkai headed 002°. The slope remained unchanged until about 1850m, when large massive outcrops were encountered and the slope steepened to an average angle of about 40°. The sea-floor was composed of about 50 % outcrop at 1850 m, and the proportion of outcrop increased up slope. Sample 3 was collected at 1845 m from a massive outcrop of volcanic conglomerate with subangular to rounded pyroxene andesite clasts.

To find collectable outcrop, Shinkai moved several times over short distances with a general heading of 065°. Samples 4, 5, 6, and 7 were collected close together at about 1815 m from massive outcrops of volcanic breccia and conglomerate. Sample 5 is of note because of its size (35 cm) and freshness. Up slope, beginning at about 1800 m, the rocks began to have half-meter to few-meter scale bedding. The bedding was nearly parallel to the slope, perhaps just slightly shallower. Samples 8 and 9 were collected at about 1796 m from these bedded volcanic breccias and conglomerates. Samples 10 and 11 (a rounded conglomerate clast and a whole volcanic conglomerate respectively) were collected at 1752 m. Shinkai next headed in a direction of about 010°. At about 1660 m the slope steepened to an average of about 75-80°. The strike of these cliffs was guessed to be about 320°. Small valleys 10s of meters across indented the cliff face. These valleys also had nearly vertical sides. Bedding exposed in the cliffs was very similar in character and orientation to the bedding seen at greater depths (ca 25-35°). At about 1595, the slope flattened out again to the ca. 40° range. The final samples (12-15) were collected above this break in slope at a depth of 1585-1579 m. These samples also were of volcanic conglomerate. We departed for the surface at 16:24.

Summary: Outcrops along this dive track consist of bedded polymictic volcanic breccia and conglomerate with clast sizes up to 50 cm or more in diameter. The clasts in these rocks are rounded to subangular porphyritic andesite and related lavas and are commonly supported by the matrix. The dips of the conglomerates are in the range of 25-30°, with probable northwesterly strikes. Steep cliffs encountered at about 1660 m may represent the scarp of a northwesterly trending and perhaps relatively young fault.

6-2-4 Dive 826, western scarp of Ogasawara Ridge at 28° 10'N

The dive started at 10:58 at a depth of 1750 m. The Shinkai headed ~ 090° up to a depth of ~ 1640 m. An outcrop a few meters across was first sampled at ~ 1700 m. Two samples were collected at that site, both of which were calcareous mudstones. At ~ 1640 m depth, The Shinkai crossed a prominent linear ridge-like structure, which appeared like a large dike. The Shinkai first sampled an outcrop just apparently across the liner structure, where three rocks were obtained (calcareous sandstone, altered andesite, and volcanic breccia). After that, the Shinkai attempted to get back to the liner structure, but failed to do so. During this attempt, the Shinkai made a somewhat clockwise maneuver at a depth of ~ 1640 m.

At ~ 12:55, the Shinaki headed ~ 090° uphill. At ~ 13:07 (~ 1520 m), it encountered a whitish outcrop, and collected one rock sample (calcareous mud) as well as one push core. At ~ 13:30 (~ 1440 m), the Shinkai encountered a massive outcrop, where some ropy lava structure was observed (although not apparent in the video images). It collected two samples, which in fact turned out to be andesitic lava. Some ~ 100 m above this point (at ~ 14:00 to ~ 14:20), the Shinkai encountered an massive outcrop, consisting a steep scarp. The Shinkai took three samples there (all calcareous sandstone).

At ~14:30 (~ 1140 m), the Shinkai again looked a ropy lava, but no sampling attempt was occurred. At ~ 14:45 (~ 1130 m), the Shinkai collected one limestone. Between at 15:05 (~ 1000 m) and at ~ 15:30 (~ 800 m), it sampled five calcareous rocks. Above ~ 770 m (at ~ 15:50), the Shinkai observed strong ripple marks on the sedimented seafloor. The Shinkai collected last four samples at sporadic outcrops above there (~ 770 m to ~ 710 m). Among these, the very last sample was turned out to be an altered andesite lava.

The Shinkai left bottom on 16:15 at 705 m.

6-3 Descriptions of Samples

Brief descriptions of the samples collected are included in Appendix C. Samples distributed to shipboard scientists are noted in Appendix D. Photographs of the samples from each dive are shown in Appendix E.

6-3-1 Dive 823

Seventeen rocks were collected during Dive 823, at eight different locations on the sea floor. The samples were predominantly volcaniclastic sandstones, breccias, and conglomerates. Some of the breccias have the appearance of debris flows. Five of the samples were poorly sorted volcaniclastic sandstones and eight were polymictic breccias and conglomerates with subrounded to subangular clasts. All have thick Mn rinds. One large manganese nodule and one manganese crust were collected. A large olivine-plagioclase phyric basalt sample is likely a clast from the debris flow breccia. One push core was attempted but no material was recovered. Samples ranged in weight from 0.15 kg to 12.2 kg.

6-3-2 Dive 824

Twenty-two samples were collected during Dive 824 at 10 sites along the dive track. These included a variety of sediments, some of which were very similar to the debris flow breccias of Dive 823. There were five poorly sorted sandstones/siltsones, three pumice clasts, eight volcaniclastic breccia or conglomerates with andesitic clasts, and three clasts of manganese nodules (sample 21, a Mn nodule, was lost). Most of the breccias have abundant gray andesitic clasts. Sample 11 includes an 11a (an andesite clast) and 11b, a volcanic breccia with andesitic clasts. Thick manganese rinds are common on the samples. Samples weigh from 0.1 kg to 12.2 kg.

6-3-3 Dive 825

Fifteen samples were collected from eight samples stops along the dive track. The samples are distinctive from those of Dives 823 and 824 in the absence of manganese rinds. Most of these samples have only a thin veneer of manganese. Eleven of these samples are similar to the volcaniclastic breccias and conglomerates of Dives 823 and 824. They include abundant dark gray andesitic clasts and some dacitic breccias. Most are clast supported, though some are matrix supported. Two andesite samples are almost certainly clasts weathered from similar breccia and conglomerate. Some of the clasts are subrounded, suggesting an origin by redeposition rather than as a primary volcanic deposit. Samples included two rounded pumice samples, that may have been rafted into the area. Samples range in size from 0.4 kg to 8.8 kg.

6-3-4 Dive 826

Dive 826 was on a steep west-facing scarp NNW. The samples are quite different from those at Dives 823, 824, an 825. There are numerous samples of calcareous sandstones (8), calcareous mudstones (2), and fossiliferous limestones (6). The limestones include abundant large foraminifers, tentatively identified as Nummulites, an Eocene fauna that has been identified in the Eocene sections in Haha-jima, Guam, and the island of 'Eua in the Tonga forearc. This suggests this exposure is close in time to that exposed in the youngest stratigraphy on Chichi-jima. Associated with the calcareous sediments are clasts of brown-gray andesite (3), altered andesite (1), and volcaniclastic breccia (1). One of the volcanic clasts was initially identified as boninitic, but shipboard thin section study shows that it is a plaioclase-rich two pyroxene andesite. It is not clear if any of the volcanic samples represent pieces of lava flows, or if they are all clasts weathered from volcanic breccias. One push core sampled recovered a small amount of sediment.

CMT May 31 08:41 YK04-05 Leg4, SeaBeam2100 R/V YOKOSUKA, Grid=200m, Cont.Int.=100m, by T.KODERA

YK04-05 Leg4 Ogasawara Ridge

CMT May 31 08:52 YK04-05 Leg4, SeaBeam2100 R/V YOKOSUKA, Grid=200m, Cont.Int.=100m, by T.KODERA

Figure 6: Bathymetry in the areas of Dive 6K#823 (left) and Dive 6K#824 (right)

#824 DIVE

#823 DIVE

Figure 7: Bathymetric maps of areas for Dive 6K#825 (left) and Dive 6K#826 (right)

#825 DIVE

^{#826} DIVE

Dive #	Date	Observer	Pilot	Co-pilot	Submersible's	On bottom	Lat (N)	Long (E)	Sam-	Start	Location
	(2003)				navigation/	Off bottom	Lat (N)	Long (E)	ples	Depth	
					Ship's	(JST Time)				End	
					Navigation					Depth	
		Sherman	Kazuki	Yoshinari	SSBL/	11:44:00	28° 10.0392'N	141° 47.2897'E	17	3771 m	Steep scarp, west
823	May 25 th	Bloomer	Iijimia	Ono	D-GPS	15:51:00	28° 10.4369'N	141 ° 48.5758'E	rocks	2766 m	side Ogasawara
			-		WGS84						Ridge
		Satoru	Toshiaki	Masanobut	SSBL/	11:14:00	28° 36.9000'N	141 ° 47.7163 'E	22	2899 m	Steep scarp, west
824	May 26 th	Haraguchi	Sakurai	Yanagitani	D-GPS	16:22:00	28°. 36.8293'N	141 ° 48.8510'E	rocks	1721 m	side Ogasawara
	_			_	WGS84						Ridge
		Mark	Tsuyoshi	Hirobumi	SSBL/	10:58:00	27° 41.4805'N	141 ° 55.3816'E	15	2182 m	NNW scarp, west
825	May 27 th	Reagan	Yoshiume	Ueki	D-GPS	16:23:00	27 ° 42.3072'N	141 ° 56.0816'E	rocks	1579 m	side Ogasawara
					WGS84						Ridge; W of
											Muko-jima
		Yasuhiko	Kazuki	Keita	SSBL/	10:54:00	27°23.8812'N	141°2.4419'E	21	1750 m	Steep scarp, west
826	May 28 th	Ohara	Iijimia	Matsumoto	D-GPS	16:17:00	27 ° 23.5729'N	142 ° 4.1819'E	rocks,	705 m	side Ogasawara
	-				WGS84				1 push		Ridge; NNW of
									core		Chichi-jima

 Table 4. List of Shinkai 6500 Dives completed during cruise YK04-05 Leg 4

Table 5. Summary of the video and camera records obtained during Shinkai 6500 dives

Dive #	Date	Observer	Tape #	No. 1 Camera	No. 2 Camera	Handheld digital	Digital video
						still photos	still photos*
823	May 25 th , 2004	Sherman Bloomer	1 of 4	1130-1432		36 stills archived	
			2 of 4	1433-1551		(220 taken)	
			3 of 4		1130-1433		
			4 of 4		1433-1551		
824	May 26 th , 2004	Satoru Haraguchi	1 of 4	1105-1406		36 stills	
			2 of 4	1407-1623			
			3 of 4		1105-1406		
			4 of 4		1407-1623		
825	May 27 th , 2004	Mark Reagan	1 of 4	1051-1355		18 stills	
			2 of 4	1356-1624			
			3 of 4		1051-1355		
			4 of 4		1356-1624		
826	May 28 th , 2004	Yasuhiko Ohara	1 of 4	1051-1352		none	
			2 of 4	1354-1617			
			3 of 4		1051-1352		
			4 of 4		1354-1617		

*being processed at JAMSTEC

7. POST-CRUISE WORK

Additional post-cruise work will be completed on the samples distributed to the shipboard party. Preliminary assignment of work includes:

To be done by the Japanese Team:

- Basic petrography: Haraguchi (at ORI, Univ. Tokyo)
- Major elements, XRF (whole rocks and bulk glasses): Haraguchi (at ORI, Univ. Tokyo)
- Major elements, EMP (mineral phases): Haraguchi (at ORI, Univ. Tokyo)
- Trace elements, ICP-MS: Kimura (at Shimane U.)
- PGE elements, ICP-MS: Kimura (at Shimane U.)
- Sr, Nd, and Pb isotopes (excluding Hf), Ar-Ar dating: Ishizuka (at Geol. Survey of Japan)
- Major elements of mineral phases (spots and maps), EPMA: Ishii (at ORI, Univ.Tokyo)
- Trace elements of mineral phases, SIMS: Ishii (at ORI, Univ. Tokyo)

To be done by the US Team:

- Analyses of glass inclusions and glass fragments: Matt Wortel (for thesis at Univ. Iowa)
- Hf isotope work: David Peate (at new laboratory at Univ. Iowa)
- Os isotopes: Katherine Kelley (at DTM)
- O isotopes: John Eiler (at Cal. Tech.)
- Volatiles in glasses, FTIR: John Eiler (at Cal Tech.)
- Volatile element concentrations, in inclusions in mineral phases, SIMS: Wortel/Kelley
- Trace elements in inclujsions in mineral phases, LA-ICP-MS: Reagan/Wortel, and Terry Plank (at Boston U.)

As for the isotopic work, we have the following agreement:

- Osamu Ishizuka will see the time-dependent isotopic evolution of the Bonin Ridge (to compare the Shinkai samples, Chichi-jima samples, and Haha-jima samples) (Note: he already analyzed the latter two samples, and presented the results in the previous Goldschmit conference).
- David Peate will see the spatial isotopic variation of the IBM proto-arc and will examine the manganese rinds and nodules

Where possible, each research group has a thin-section chip of each whole-rock that they intend to analyze (when there was enough sample). This will allow groups to be able to place the data they collect in a petrographic framework immediately. As appropriate and if agreed on by the participants, a few whole rocks and glass samples will be analyzed for ICP-MS trace elements in Terry Plank's lab at Boston University. This work would let us correct for inter-laboratory bias and directly compare the compositions of samples from the dives with compositions of the samples we have analyzed from Guam, Saipan, and DSDP sites 458 and 459.

8. References

- Arculus, R.J., Pearce, J.A., Murton, B., and van der Laan, S., 1992. Igneous stratigraphy and major element geochemistry of Holes 786A and 786B., *Proc. ODP, Sci. Results*, 125, 143-170.
- Bloomer, S.H., 1983. Distribution and origin of igneous rocks from the landward slopes of the Mariana Trench: implications for its structure and evolution. J. Geophys. Res., 88, 7411-7428.
- Bloomer, S. H., and Hawkins, J. W., 1983. Gabbroic and ultramafic rocks from the Mariana trench: An island arc ophiolite. In Hayes, D. E. (Ed.), *The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands (Pt. II)*. Am. Geophys. Union Monogr., **27**:294-317.
- Bloomer, S.H., Taylor, B., MacLeod, C.J., Stern, R.J., Fryer, P., and Johnson, L., 1995. Early arc volcanism and the ophiolite problem: a perspective from drilling in the western Pacific. *In:* Taylor, B., and Natland, J.H. (Eds.) *Active Margins and Marginal Basins: a Synthesis of Ocean Drilling in the Western Pacific.* AGU Monogr. Series, Washington D.C., 1-30.
- Bougault, H., Maury, R.C., El Azzouzi, M., Joron, J.-L., Cotton, J. and Treuil, M., 1981. Tholeiites, baslatic andesties, and andesites from Leg 60 sites: geochemistry, mineralogy, and low partition coefficient elements, in *Init. Repts. DSDP*, 60, Hussong, D.M., Uyeda, S. et al., ed. Washington, D.C. U.S. Govt. Printing Office, 657-677.
- Clift, P.D., 1995. Volcaniclastic sedimentation and volcanism during the rifting of Western Pacific backarc basins. *In:* Taylor, B., and Natland, J.H. (Eds.) *Active Margins and Marginal Basins: a Synthesis of Ocean Drilling in the Western Pacific.* AGU Monogr. Series, Washington D.C., 67-96.
- Dobson, P.F., 1986. The petrogenesis of boninite: a field, petrologic and geochemical study of the volcanic rocks of Chichijima, Bonin Islands, Japan. Ph.D. Dissertation, Stanford University, CA, 163 pp.
- Fryer, P., Pearce, J.A., Stokking, L.B. et al., 1990. Proceedings of the Ocean Drilling Program, Scientific Results, 125, Ocean Drilling Program, College Station, Texas, 1092pp.
- Fujioka, K., Matsuo, Y., Nishimura, A., Koyama, M., and Rudolfo, K.S., 1992. Tephras of the Izu-Bonin Forearc (Sites 787, 792, and 793). *In:* Taylor, B., Fujioka, K. *et al. Proceedings of the Ocean Drilling Program, Scientific Results*, **126**, Ocean Drilling Program, College Station, Texas, 47-74. Hanzawa, S., 1947. Eocene foraminifera from Hahajima. *J. Paleontol.*, **21**, 254-259.
- Haraguchi, S., 1999. Early arc and rifting volcanism in the paleo-Izu-Ogasawara-Mariana arc (Kyushu Palau Ridge and Izu-Ogasawara-Mariana forearc region), Ph.D. Dissertation, Ocean Research Institute, University of Tokyo, 429 pp.
- Hickey, R.L. and Frey, F.A., 1982. Goechemical characteristics of boninite series volcanics: implications for their source. *Geochim. Cosmochim. Acta* **46**, 2099-2115.
- Hickey-Vargas, R.L., 1989. Boninites and tholeiites from DSDP Site 458, Mariana forearc, In: Crawford, A.J. (ed.) *Boninties and Related Rocks*, London:Unwin Hyman, 339-356.
- Hickey-Vargas, R.L. and Reagan, M., 1987. Temporal variation of isotope and rare earth element abundances from Guam: implications for the evolution of the Mariana arc. *Contrib. Miner. Petrol.* 97, 497-508.
- Hiscott, R.N., and Gill, J.B., 1992. Major and trace element geochemistry of Oligocene to Quaternary volcaniclastic sands and sandstones from the Izu-Bonin Arc. *In:* Taylor, B., Fujioka, K. *et al. Proceedings of the Ocean Drilling Program, Scientific Results*, **126**, Ocean Drilling Program, College Station, Texas, 467-486.
- Hussong, D.M., Uyeda, S., et al., 1981, *Initial Report Deep Sea Drilling Project*, **60**, Washington , DC: US Govt Printing Office, 929 pp.
- Hussong, D. and Uyeda S., 1981. Tectonic processes and the history of the Mariana Arc: a synthesis of the results of Deep Sea Drilling Project Leg 60. In: Hussong, D.M., Uyeda, S., et al., Initial Reports of the Deep Sea Drilling Project, 60, US Govt. Printing Office, Washington D.C., 909-929.
- Ishii, T., 1985. Dredged samples from the Ogasawara forearc seamount of "Ogasawara Paleoland" forearc ophiolite. *In:* Nasu, N. (Ed.) *Formation of Active Ocean Margins*. Terrapub., Tokyo, 307-342.
- Iwasaki, Y. and Aoshima, M., 1970. Report on the geology of the Bonin Islands, The Nature of Ogasawara, Report on Scientific and Natural Monuments of the Ogasawara Islands, *The Ministry* of Education, Japan, 205-220.
- Kaneoka, I., Isshiki, N., and Azashu, S., 1970. K-Ar ages of the Izu-Bonin Islands. *Geochem. Jour.* 4, 53-60.

- Kikuchi, Y., 1890. On pyroxenic components in certain volcanic rocks from Bonin Island. J. Coll. Sci. Imp. Univ. Japan, **3**, 67-89.
- Komatsu, M., 1980. Clinoenstatite in volcanic rocks from the Bonin Islands. *Contrib. Mineral. Petrol.* **74**, 329-338.
- Kuroda, N. and Shiraki, K. 1975. Boninites and related rocks of Chichijima, Bonin Islands, Japan: *Rep. Fac. Sci. Shizuoka Univ.* **10**, 145-155.
- Kuroda N., Shiraki, K., and Urano, H., 1978. Boninite as a possible calc-alkalic primary magma. *Bull. Volcanol.* **41**, 563-575.
- Kuroda, N., 1984. Magma mixing and quartz-bearing boninites from Chichijima and Ani-jima, Bonin Islands. *Mem Geol. Soc. Japan.* 24, 157-164.
- Kuroda, N., Shiraki, K., and Urano, H., 1988. Ferropigeonite quartz dacites from Chichijim, Bonin Islands: latest differentiates from boninite-forming magma. *Contrib. Miner. Petrol.*, **110**, 129-138.
- Maruyama, S. and Kuramoto, T. 1981. Geology of Otooto-jima, Ani-jima, and Chichi-jima. Bull. Volanol. Soc. Japan, Ann. Mtg., 26, 146.
- Matsumaru, K., 1976. Larger foraminifer biostratigraphy of the Minamizaki Limestone, Chichijima, the Bonin Islands, In: *Program for the 83rd Annual Meeting of the Geological Society of Japan*, 196.
- Meijer, A., 1980. Primitive island arc volcanism and a boninite series: examples from western Pacific island arcs. *In:* Hayes, D.E. (Ed.) *The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands*. AGU Monogr., **23**, 271-282.
- Meijer, A., 1983. The origin of low-K rhyolites from the Mariana frontal arc. *Contrib. Mineral. Petrol.* **83**, 45-51.
- Meijer, A., Reagan, M., Ellis, H., Shafiqullah, M., Sutter, J., Damon, P., and Kling, J., 1983. Chronology of volcanic events in the eastern Philippine Sea. In Hayes, D. E. (Ed.), *The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands (Pt. II). Am. Geophys. Union Monogr.*, 27, 349-359.
- Mottl, M.J., 1992. Pore waters from serpentinite seamounts in the Mariana and Izu-Bonin fore-arcs, Leg 125: evidence for volatiles from the subducting slab. *In:* Pearce, J.A., Fryer, P., *et al. Proceedings of the Ocean Drilling Program, Scientific Results*, **125**, Ocean Drilling Program, College Station, Texas, 373-385.
- Murton, B.J., Peate, D.W., Arculus, R.J., Pearce, J.A. and van der Laan, S., 1992. Trace- element geochemistry of volcanic rocks from Site 786 (Leg 125): the Izu-Bonin forearc. *In:* Pearce, J.A., Fryer, P., *et al. Proceedings of the Ocean Drilling Program, Scientific Results*, **125**, Ocean Drilling Program, College Station, Texas, 211-236.
- Natland, J.H. and Tarney, J., Petrologic evolution of the Mariana arc and back-arc system-a synthesis of drilling results in the southern Philippine Sea, *Init. Repts. DSDP*, 60, 681-708, 1981.
- Parkinson, I.J., Pearce, J.A., Thirwell, M.F., Johnson, K.J.M., and Ingram, G. 1992. Trace element geochemistry of peridotites from the Izu-Bonin-Mariana forearc, ODP Leg 125, *Proc. Ocean Drilling Program, Scientific Results*, 125, College Station, TX: Ocean Drilling Program, 487-506.
- Pearce, J.A., Thirlwall, M.F., Ingram, G., Muron, B.J., Arculus, R.J., and van der Laan, S.R., 1992. Isotpic evdience for the origin of bonintes and related rocks drilled in the Izu-Bonin (Ogasawara) forearc, ODP Leg 125, *Proc. Ocean Drilling Program, Scientific Results*, **125**, College Station, TX: Ocean Drilling Program, 237-261.
- Pearce, J.A., Van der Laan, S.R., Arculus, R.J., Murton, B.J., Ishi, T., Peate, D.W., and Parkinson, I., 1992, Boninite and harzburgite from Leg 125 (Bonin-Mariana forearc): A case study of magmagenesis during the initial stage of subduction, in Fryer, P., Pearce, J.A., et al., *Proceedings of the Ocean Drilling Program, Scientific results*, **125**: College Station, Texas, Ocean Drilling Program, 623–659.
- Petersen, J., 1891. Der Boninit von Peel Island, Jahrb. Hamburg Wiss. Anst. 8, 314-349.
- Pezard, P.A., Hiscott, R.N., Lovell, M.A., Colella, A., and Malinverno, A., 1992. Evolution of the Izu-Bonin intraoceanic forearc basin, western Pacific, from cores and FMS images. *In:* Hurst, A., Griffiths, C.M., and Worthington, P.F. (Eds.) *Geological Applications of Wireline Logs II. Spec. Publ. Geol. Soc. London*, 65, 43-69.
- Reagan, M.K. and Meijer, A., 1984. Geology and geochemistry of early arc-volcanic rocks from Guam. *Geol. Soc. Amer. Bull.*, **95**, 701-713.
- Satake, H., Tanaka, M., Hirai, A., Urano, H., Shiraki, K., and Kuroda, N., 1984. Oxygen and hydrogen isotope ratios of boninite in Chichijima, Bonin Islands and its origin: *Abstr. Repts. Ann. Mtg.*, *Geochem. Soc. Japan*, 211.

- Shibata, K., Uchiumi, S., Uto, K., and Nakagawa, T. 1984. K-Ar age results 2: New data from the Geological Survey of Japan: *Bull. Geol. Sur. Japan*, **35**, 331-340.
- Shiraki, K., Kuroda, N., Maruyama, S., and Urano, H., 1978. Evolution of the Tertiary volcanic rocks in the Izu-Mariana arc: *Bull. Volcanol.* **41**, 548-562.
- Shiraki, K., Kuroda, N., Urano, H., and Maruyama, S., 1980. Clinoenstatite in boninites from the Bonin Islands, Japan, *Nature*, **285**, 31-32.
- Stern, R.J. 2002. Subduction Zones" Reviews of Geophysics, 10.1029/2001RG000108
- Stern, R.J., Morris, J., Bloomer, S.H., and Hawkins, J.W., 1991. The source of the subduction component in convergent margin magmas: trace elmeent and radiogenic isotope evidence from Eocene boninites, Mariana forearc, *Geochim. Cosmochim. Acta* 55, 1467-1481.
- Stern, R.J., and Bloomer, S.H., 1992. Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California Arcs. *Geol. Soc. Am. Bull.*, **104**, 1621-1636.
- Suzuki, T., 1885. Volcanic rocks of the Chichi-jima group. Bull Geol. Soc.Japan, Pt. A. 1, 23-39.
- Taylor, B., 1992. Rifting and the volcanic-tectonic evolution of the Izu-Bonin-Mariana arc. *In:* Taylor, B., Fujioka, K., *et al. Proceedings of the Ocean Drilling Program, Scientific Results*, **126**, Ocean Drilling Program, College Station, Texas, 672-652.
- Taylor, B., Fujioka, K., et al., 1992. Proceedings of the Ocean Drilling Program, Scientific Results, 126, Ocean Drilling Program, College Station, Texas, 709pp.
- Taylor, R.N., Lapierre, H., Vidal, P., Nesbitt, R.W., and Croudace, I.W., 1992. Igneous geochemistry and petrognesis of the Izu-Bonin fore-arc basin. ODP Leg 126, *Proc. Ocean Drilling Program*, *Scientific Results*, 125, College Station, TX: Ocean Drilling Program, 405-430.
- Taylor R.N., Murton, B.J., and Nesbitt, R.W., 1992. Chemical transects across intra-oceanic arcs: implications for the tectonic setting of ophiolites. In Parson, L.M., Murton, B.J., and Browning, P. (Eds.) *Ophiolites and their Modern Oceanic Analogues*. Spec. Pub. Geol. Soc. London, 60, 117-132.
- Taylor, R.N., 1994, Arc volcanism in an extensional regime at the initiation of subduction: a geochemical study of Hahajima, Bonin Islands, Japan. In :Smellie, J. (ed.) Volcanism Associated with Extension at Consuming Plate Margins Geol. Soc. Lond. Spec. Publ. 81.
- Taylor, R.N., Nesbitt, R.W., Vidal, Pl, Harmon, R.S., Auvray, B. and Croudace, I.W., 1994. Mineralogy, Chemistry, and Genesis of the Boninites Series Volcanics, Chichjima, Bonin Islands, Japan. *Journal of Petrology*, 35, 577-617.
- Tsunakawa, H. 1983. K-Ar dating on volcanic rocks in the Bonin Islands and its tectonic implication. *Tectonophysics*, **95**, 221-232.
- Umino, S., 1985. Volcanic geology of Chichijima, the Bonin Islands (Ogasawara Islands). J. Geol. Soc. Japan, 91, 505-523.
- Umino, S. 1986a. Geological and petrological study of boninites and related rocks from Chichijima, Bonin Islands, Unpublished PhD. Thesis, University of Tokyo, 373 pp.
- Umino, S., 1986b. Magma mixing in boninte sequence of Chichijima, Bonin Islands. J. Volcanol. Geotherm. Res. 29, 125-157.
- Umino, S. and Iwano, M., 1992. Origin of porphyritic boninite -destruction of mushy layer by fountains in magma chamber- (in Japanese). *Bull. Volcanol. Soc. Japan*, **37**, 183 203.
- Vidal, P., Auvray, B. Nesbitt, R.W., and Pin, C. 1985. Origin of boninites from Bonin Islands: Nd, Sr, and Pb isotopic constraints. Terra Cognita, 5, 286.
- van der Laan, S.R., Arculus, R.J., Pearce, J.A., and Murton, B.J., 1992, Petrography, mineral chemistry, and phase relations of the basement boninite series of Site 786, Izu-Bonin forearc, in Fryer, P., Pearce, J.A., et al., Proceedings of the Ocean Drilling Program, Scientific results, 125: College Station, Texas, Ocean Drilling Program, p. 171–201.
- Yajima, K., and Fujimaki, H., 2001, High-Ca and low-Ca boninites from Chichijima, Bonin (Ogasawara) archipelago: Japanese Magazine of Mineralogical and Petrological Sciences, 30, 217–236.
- Yoshiwara, S., 1902. Geological age of the Ogasawara Group (Bonin Islands) as indicated by the occurrence of Nummulites. Geol. Mag. 9, 296-303.

APPENDIX A: Video Logs

Video Log for Dive#823 (Observer; Sherman H. Bloomer)

Local time D	epth(m) Head	ding(deg.)	Note	Remark
11:30:00		On bottom	L	
11:39:01	3,775	71 fissure		
11:39:31	3,775	89 Mud stone	covered with sedeminmet	
11:40:14	3,771	92 Wthie fish		
11:44:00	3,771	On bottom	X=-560,Y=-1400	
12:02:00	3,767	56 Rock samp	bling	
12:09:00	3,762	58 Big!! rock	sampling	
12:31:48	3,658	97 Sampling	four rocks X=-430, Y=-1130	
11:35:00	3,649	95 transit to H	leading 90deg.	
11:42:00	3,611	X=-450, Y	<i>z</i> =-1050	
	3,576	129 Rock samp	ble	
13:15:11	3,501	66 Sediment,	No rock X=-270, Y=-820	
13:19:11	3,476	96 Spotted ro	cks	
13:41:11	3,475	98 Stop tp tak	e rock sample	
13:29:11	3,475	111 Rcok sam	ble, X=-260, Y=-700	
13:31:51	3,470	91 Transit sta	rt	
13:41:22	3,379	78 X=-250, Y	r=-450	
13:59:53	3,347	Rock and	push core (White) X=-200, Y=-370	
14:00:00		Transit to	Head 70 deg.	
14:19:00		Rock sam	ble	
14:30:00	3,134	X=-60, Y=	-80	
14:39:37	3,038	96 Stop to tak	e rock sample	
15:12:37	3,030	135 Sampling	three rocks X=-30, Y=280	
15:20:20	2,980	94 Outcrop co	overed with manganese	
15:22:27	2,977	157 Red fish		
15:23:49	2,978	147 Sampling	three rocks X=50, Y=370	
15:34:55	2,919	97 X=60, Y=	460	
15:48:51	2,780	37 Sediment		
15:50:14	2,775	X=80, Y=	750	
15:51:58	2,766	Leave bott	om	

Theo bog for bive 021 (Observer, butoru Huruguein)	Video Log for	Dive#824	(Observer;	Satoru	Haraguchi)
--	---------------	----------	------------	--------	-----------	---

Local time	Depth(m)	Heading(deg.)	Note	Remark
11:14:00	2,899	On	bottom, X=-170, Y=	
11:24:37	2,896	97 san	npling ?	
11:25:45	2,896	135 roc	k sampling	
11:31:45	2,896	94 roc	k sampling	
11:44:07	2,827	102 Ou	tcrop covered with sediment	
11:45:19	2,820	X=	-220, Y=-1170	
11:46:06	2,814	125 sed	iment	
11:48:17	2,803	155 Ou	tcrop covered with sediment	
11:49:24	2,738	129 Sto	p to sample rock	
11:56:10	2,787	118 roc	k sampling	
11:59:12	2,785	103 Big	g rock sampling	
12:12:00	2,728	89 X=	-330, Y=-1090	
12:17:00	2,683	87 X=	-335, Y=-880, sediment	
12:20:34	2,663	57 Sto	p to sample rock	
12:27:11	2,659	57 roc	k sampling	
12:32:31	2,665	45 roc	k sampling	
12:34:24	2,655	56 roc	k sampling,X=-340, Y=-820	
12:46:50	2,592	X=	-300, Y=-760	
12:51:00	2,584	75 Sto	p to sample rock	
12:54:41	2,581	40 roc	k sampling	
12:57:31	2,582	49 roc	k sampling(total 4 rocks)	
12:59:51	2,582	san	npling finished	
13:06:14	2,538	67 clif	f	
13:18:47	2,506	93 Try	to take rock sample	
13:29:21	2,495	65 Sar	npling rock X=-1170, Y=-670	
13:31:34	2,489	76 sta	rt transit to East	
13:36:47	2,436	X=	-490, Y=-580	
13:42:35	2,388	Ou	tcrop covered with thin sediment X=-500,	Y=-520
13:44:45	2,378	35 Sto	p to take rock sample. Something life	
13:52:49	2,366	86 roc	k sampling	
13:55:21	2,363	88 roc	k sampling	
13:55:49	2,362	82 Sar	npling three rocks X=-490, Y=-480	
13:57:49	2,351	73 star	rt transit toward East	
14:10:41	2,239	X=	-450, Y=-290	
14:12:20	2,230	132 Sto	p to take rock sample	
14:25:56	2,187	roc	k sampling X=-500, Y=-260, Something	life
14:34:33	2,139	X=	-460, Y=-140	
14:41:44	2,080	X=	-470, Y=-40	
14:52:49	2,055	Sar	npling three rocks X=-470, Y=0	
15:03:34	1,972	98 Ou	tcrop, Terrace?	
15:06:08	1,965	107 Try	to rock sample, X=-430, Y=160, Someth	ing life
15:30:59	1,889	123 X=	-470, Y=230	
15:41:11	1,875	84 fail	ure to sampling	
15:43:50	1,853	X=	-450, Y=290	
15:46:26	1,850	Try	v to sample rock	
15:53:50	1,852	99 Sar	npling rock X=-440, Y=290	
16:01:05	1,803	82 X=	-420, Y=390	
16:21:48	1,721	Sar	npling two rocks X=-320, Y=570	
16:22:51		Lea	ave bottom	

Local time	Depth(m) He	eading(deg.)	Note	Logger
10:32:43	1,680	decendi	ng	Trey & Kimura
10:33:55	1,802	18 dito.		
10:40:39	2,000	280 ditto.		
10:51:00	2,234	33 ditto.		
10:59:00	2,301	42 on botto	om, mud flat, Flow= 10m, 200 deg	g, X=-960, Y=-560
11:04:08	2,294	50 start ru	ning, muddy flat	-
11:10:00	2,250	49 mud fla	t	
11:16:00	2,219	57 mud fla	t	
11:17:20	2,214	53 see anu	mal tracks	
11:20:00	2,194	51 X=-740	, Y=-270	
11:25:00	2,182	295 Samplin	ng @X=-700, Y=-230, rolling stor	n?e on mud flat
11:37:00	2,168	46 mud fla	t	
11:41:00	2,144	46 X=-640	, Y=-130	
11:44:56	2,103	48 X=-560	, Y=-50, see mud flat	
11:50:00	2,061	47 see muo	l flat	
11:54:00	2,031	47 X=-410	, Y=100, see sea cucumber	
12:05:31	1,983	90 Samplii	ng @X=-270, Y=240, rolling ston	?e on mud flat
12:09:00	1,979	45 start ru	ining, muddy flat	
12:17:00	1,920	0 X=-120	, Y=400, change course to 0°	
12:34:00	1,848	4 X=290,	Y=450, still thick white deposit	
12:47:00	1,844	326 Samplin	ng @X=320, Y=450, outcrop of b	reccia?
12:56:00	1,846	73 samplin	g started	
13:20:00	1,833	0 Samplii	ng finished(1 sample). Start movin	ng.
13:24:00	1,819	45 Samplii	ıg?	
13:28:10	1,819	5 Samplii	ıg	
13:49:30	1,815	158 black fi	sh	
13:53:40	1,816	162 Samplin	ıg	
13:54:55	1,816	161 Big roc	k sampling	
14:11:21	1,815	14 Samplin	ig 4 rocks	
14:16:11	1,812	354 x=320,	y=520, Start moving	
14:25:21	1,796	125 stop, sa	mpling	
14:33:42	1,795	93 big roch	: sampling	
14:40:02	1,780	166 Start ru	aning, X=360, Y=530	
15:15:51	1,751	74 samplin	g	
15:26:10	1,735	20 X=380,	Y=580, start running, head north	
15:39:20	1,686	35 X=450,	Y=590	
15:49:00	1,647	0 X=480,	Y=610	
15:55:10	1,614	23 X=490,	Y=600	
16:00:00	1,584	61 stop sub	., start sampling	
16:10:00	1,585	107 samplin	g 1 samples	
16:13:00	1,562	60 X=560,	Y=610	
16:15:00	1,579	101 samplin	g start	

Video Log for Dive#825 (Observer; Mark K. Reagan)

16:21:00	1,579	118 sampling 3 samples
16:23:00	1,579	115 off bottom

Video Log for Dive#826 (Observer; Yasu Ohara)

Local time	Depth(m) Heading(c	deg.) Note	Remark
10:33:31		X=530, Y=-1730	
10:42:00)	X=520, Y=-1730	
10:42:42	1,679	184 landing	
10:50:46	1,758	14 see sea floor	
10:53:50	1,750	16 see ripple mark?	
10:54:43	1,750	16 mud flat, X=520, Y=-1740, sampling attempted	
11:18:39	1,749	21 see flactures	
11:25:23	1,746	32 sampling #1, #2	
11:36:07	1,674	23 X=580, Y=-1560	
11:43:05	1,632	101 running	
11:59:16	1,628	69 hummocky surface outcrop, sampling attempted	
12:04:00	1,628	sampling finished.	
12:14:00	1,602	43 X=470, Y=-1260	
12:24:00	1,568	107 X=490, Y=-1200	
12:34:00	1,650	328 X=490, Y=-1330	
12:41:00	1,643	282 X=580, Y=-1440	
12:57:00	1,623	92 X=440, Y=-1320	
13:13:10	1,516	74 Push core sampling	
13:17:30	1,517	69 sampling	
13:22:40	1,515	102 Fish	
13:48:45	1,425	1112 rocks sampling	
13:50:15	1,418	109 sampling finished, moving from X=310, Y=-820	
14:08:50	1,316	75 sampling	
14:11:00	1,316	53 X=340, -Y=640	
14:19:00	1,258	143 some rocks were observed	
14:21:10	1,252	146 pebble floor	
14:22:50	1,240	92 sampling 2 rocks	
14:23:00	1,237	92 X=340, Y=-480	
14:24:10	1,233	95 mud floor	
14:25:21	1,189	117 fish	
14:28:21	1,184	113 rock escarpment	
14:31:11	1,173	117 mud floor	
14:33:11	1,141	116 X=220, Y=-240	
14:35:21	1,132	117 rock escarpment	
14:37:11	1,129	84 massive rock covered with thin sediment	
14:38:11	1,128	115 sampling start	
14:40:15	1,126	98 samplng 1 samples	
14:41:15	1,125	98 X=190, Y=-290	
14:48:45	1,114	91 mud with some rocks	
14:49:55	1,099	91 rock escarpment	

14:50:35	1,092	91 mud surface
14:53:51	1,072	91 rock escarpment
14:54:11	1,068	91 mud surface
14:56:15	1,037	90 rock escarpment
14:57:15	1,024	90 X=140, Y=160
15:01:00	1,000	90 rock escarpment
15:04:11	1,000	2 sampling start
15:08:00	1,000	19 sampling 3 samples
15:08:30	1,000	19 X=120, Y=250
15:11:06	963	90 goothfish
15:13:50	939	91 rock escarpment
15:19:40	917	62 sampling start
15:29:00	906	43 sampling 2 samples
15:30:20	904	92 X=110, Y=480
15:32:20	882	92 rock escarpment
15:42:45	802	86 rock escarpment
15:52:59	758	sampling start X=-69, Y=1002
15:59:00	758	102 sampling 2 samples, X=-80, Y=1000
16:00:00	744	93 sand floor, current marks
16:00:50	735	79 rock escarpment
16:16:10	705	sampling 2 rocks
16:17:20	705	off bottom

+

APPENDIX C: Preliminary Sample Descriptions

CRU	ISE & LEG	NO.	STAT	ION NO.		LOCALLITY		DAY	MO	NTH	YEAR	NO. APPENDIX C: Sample Descriptions
YK04-05	5		#	823				25	Ę	5	2004	14 1
Sample	Size	of rock sa	ample	Weight	Round-	Mn-	Pher	ocryst (%, mr	n)			Comment
No	a (cm)	b (cm)	c (cm)	(kg)	ness	(mm)	ol	рх	pl	hb	others	rs Described by Ishizuka, Hargrove
								, , 				
1	18	12	4	0.9	sub rnd.	1						volcaniclastic sandstone with acidic ash layer(?)
								I I		l		
2	25	16	17	g	well rnd.	2		5,2	8,10			conglomeratic breccia w/ clasts of cognate lava & crystal frags., incl. 1 large clast of andesite/dacite
3	13	11	7	0.8	well rnd.	3						sandstone, coarse-grained, very poorly sorted, rounded to sub ang., moderate sphericity
								i i				
4	9	6	5	0.15	sub ang.	<1						conglomeratic breccia w/ clasts subang., very low sphericity, mostly lithic frags., & muddy matrix
5	10	7	5	0.4	sub rnd.	8						conglomeratic breccia w/ clasts subang., very low sphericity, mostly lithic frags., & muddy matrix
6	12	9	7	0.65	sub rnd.	1						conglomeratic breccia w/ clasts subang., very low sphericity, mostly lithic frags., & muddy matrix
7	20	14	9	3.6	well rnd.	2						conglomerate, clasts rounded to subangular, low to moderate sphericity, muddy matrix, 1 large clasts of plag-cpx-phyric ande
8	20	16	12	5.6	well rnd.	14	<1,<1	ן ז,2 _ן	5<1			fragmented ol-plag-cpx-phyric basalt within conglomerate w/ thick Mn crust,
9	28	20	12	7.4	sub rnd.	2		I I				polymict breccia w/ angular clasts including laminated sandstone, lithics, & crystal frags.
10	13	11	9	4.5	rnd.	2						polymict sandstone, coarse-grained poorly sorted sandstone 1 long mudstone lens
11	21	18	8	2	ang.	1		i i				polymict sandstone, medium-grained, very poorly sortedangular to subangular, low sphericity
12	16	11	9	1.5	sub ang.	90						laminated Mn deposit
					-							
13	20	17	8	2.8	sub ang.	1		 				mudstone.poorly consolidated, very poorly sorted withmedium-grained clasts of Mn & crystal frags.
					-							
14	22	16	10	2.8	sub ang.	100						laminated Mn deposit
15	21	15	14	4.1	sub ang.	33		 3.<2	7.<2			volcaniclastic breccia, very poorly sorted, w/ clasts of heavily altered pyx-plag-phyric andesite & sandstone in an ashy matrix
			1	1					,			. The former is former in the former is a second former in the second se
16	24	16	12	4.5	sub rnd.	22		 				volcaniclastic breccia, very poorly sorted, w/ clasts of heavily altered pyx-plag-phyric andesite & sandstone in an ashy matrix
	<u> </u>		1					I I				
17	21	13	11	3.5	sub rnd.	25						volcaniclastic breccia, very poorly sorted, w/ clasts of heavily altered byx-blad-phyric andesite & sandstone in an ashy matrix
			<u> </u>	0.0						1		
								, I I				
										 [
		1		1	1	1						

Appendix C: continued, Dive 824

CRUI	SE & LEG NO		STAT	ION NO.	LOCALLI	ſY		DAY	MONTH		YEAR		
YK04-05			#	824	Ļ			26	5		2004		
Lesstian					har	D							-
Location	Sample	Size	of rock s	ample c (cm)	Weight (kg)	Round- ness	Mn- (mm)	ol	nocryst (%, m px	m) Dl	hb	others	Described by Ishizuka, Kimura
		u (0)	2 (0)	0 (0111)	(1.87		()			P.			
	1	1 27	25	5 14	4 6	.4 sub rnd.	16						siltstone/sandstone, light brown
	1 :	2 14		9 3	3 0	.4 angular	19		1	1			siltstone/sandstone, light brown
	2	3 17	12	2 4	L 1	.1 sub ang.	4		1	, 			siltstone/sandstone, light brown
	2	4 30	22	2 19	9 12	.2 sub rnd.	7						siltstone/sandstone, light brown
	3	5 12	10	0 4	u 0	.7 sub ang.	<1						pumice, grey, altered
	3 0	5 14	1.	1 4	u 0	.7 sub ang.	7						scoria with clay matrix
	3	7 22	16	5 10	0 1	.9 sub rnd.	4		1	1			sandstone
	4 8	3 20	16	5 12	2 3	.6 sub rnd.	23		 cpx?	 	?		altered dacite/andesite breccia clasts surrounded by Mn clasts in clay matrix
	4 9	9 19	1.	1 11	2	.4 sub rnd.	6		 cpx?	 7,2			dark gray andesite with palagonite rim (2 mm)
	4 10	0 15	1	ρ ε	3 1	.6 sub rnd.	4		 . v	 ,			dark gray andesite breccia with palagonite rim, various types of breccia
	4 1 ⁻	1 33	0.3	1 15	5 16	.3 sub ang.	15	i	 3,3	 8,3			(a) gray andesite, weakly altered, vesicles 15-20%, fresh phenocrysts; (b) breccia, dark andesite compact & vesiculated, 2- 3 mm palagonite
	5 1:	2 34	18	3 14	4 6	.4 angular	5		 3,2	 10,2			breccia, dark gray andesite with palagonite rim (1-2 mm), clay matrix
	6 1:	3 22	14	4 14	4	.3 sub ang.	23		 5,2	 9,2			dark gray andesite breccia with light brown clay matrix
	6 14	4 30		9 g	9 4	.4 angular	2		 5,2	 9,2			dark gray andesite with palagonite rim (3 mm)
	6 1	5 32	14	4 11	4	.2 angular	2		 5,2	 			dark gray andesite with palagonite rim (3 mm), some cpx altered
	7 10	5 30	15	5 12	2 4	.3 angular	8	5	 	 			sandstone, including light gray breccia
	8 1	7 36	20	0 13	3 6	.2 angular	6.2						Mn clast
	8 11	3 26	1:	3 9	2	.2 sub rnd.	<1						white pumice, highly vesiculated
	8 19	9 _21	1:	3 5	5 1	.7 sub ang.	60						Mn clast 60 mm
	9 20	33	15	7 9		6 sub ang.	7						volcanic breccia (lapillistone), pumice 70%, andesite 30%
	10 2	1 7		5 4		.1 angular							Mn nodule - lost
	10 22	2 14	1	1 9	9 1	.2 rounded	40						Mn nodule

Appendix C continued: Dive 825

CRUI	SE & LEG	NO.	STAT	STATION NO. LOCALLITY				DAY	MO	NTH	YEAR	
YK04-05	;		#	825	,			27 5 200			2004	
			•									
Sample	Size	of rock sa	mple	Weight	Round-	Mn-	Phen	ocryst (%, mn	n)			Comment
No	a (cm)	b (cm)	c (cm)	(kg)	ness	(mm)	ol	px pl hb others [others	Described by Ishizuka, Kimura
1	22	18	12	2 4.5	sub ang.	0			2,10			scoria, vesicles (floated?)
2	25	18	15	5 3. 6	rounded	0			 			pumice, vesicles (floated?)
3	18	14	10) 3	sub ang.	1		5,1.5	5,1.5			andesite breccia
4	20	11	8	3 1.9	angular	1			 			breccia, dacite/andesite breccias, altered, clast supported
5	23	27	17	· 12	angular	<1		6,10	7,5			dark grey andesite clast attached with matrix
6	20	11	10	2.9	sub ang.	<1		2	5,1			large andesite lava clast in breccia, slightly altered
7	9	9	5	5 0.5	sub ang.	1		6,10	7,5			andesite lava clast, subrounded, same as #5
8	20	16	5	5 2	angular	<1						breccia
9	14	6	4	0.4	angular	<1						breccia
10	20	14	12	2 4.2	sub ang.	<1		5,3	5,2			breccia, extensively altered + rounded dark grey andesite
11	13	10	4	0.55	angular							breccia
12	24	10	10	2.5	sub ang.	<1		5,3	5,2			andesite lava clast, altered
13	18	12	10	2.5	angular	<1						breccia, extensively altered + rounded dark grey andesite
14	25	23	12	8.5	sub ang.	<1						breccia, extensively altered (no matrix hyaloclastite)
15	30	18	15	6 8.8	sub ang.	1						breccia, extensively altered (no matrix hyaloclastite)

Appendix C continued: Dive 826

CRUI	SE & LEG	NO.	STAT	ION NO.		LOCALLITY		DAY	M	ONTH	YEAR	
YK04-05			#	826				28		5	2004	
Sample	Cine		mala	Weight	Bound-	Mn-	Phor	ocruet (% m	m)			Comment
No	a (cm)	b (cm)	c (cm)	(kg)	ness	(mm)	ol	px	ox pl hb		others	Described by Ishizuka, Kimura
1	20	14	14	35	angular	<1						calcareous mudstone
2	13	8	7	1.1	angular							calcareous mudstone foraminifera? non-volcanic
2	10	0	,	0.6	angular	<1						
	16	12	10	0.0	eubang	<1						altered plag.cpv.phyric andecite with vaine
	10	10	12	5.4	subang.							
	0	- 13	10	0.2	subarly.							
7	10	10	14	0.2				10.0				
/	10	12	14	0.3	angular	<1	1,1	12,2	1,1			
8	15	13	12	3.7	subang.	<1		7,<8	4,<2			gray-brown andesitic tava
9	25	23	8	2.8	subma.	none						
10	19	17	10	8.1	subang.	<1						
11	29	18	8	4.1	subang.	<1						calcareous sandstone (muddy)
12	17	11	3	0.4	angular	<1						limestone (fossils pebble sized - Nummerites)
13	26	13	13	3.8	subrnd.	<1						limestone (fossils pebble sized - Nummerites)
14	15	12	11	1.5	subang.	<1						limestone (fossils pebble sized - Nummerites)
15	19	17	8	3.1	subrnd.	<1						calcareous sandstone (coarse)
16	15	14	8	1.2	angular	<1						limestone (fossils)
17	24	22	9	4.8	angular	<1						limestone (fossils)
18	21	12	8	1.7	angular	<1						calcareous sandstone
19	33	1	11	7	subang.	<1						calcareous sandstone
20	40	28	16	17.3	angular	<1						limestone
21	24	20	11	4.9	rounded	<1						brown-gray altered andesite lava, same as #4
C-01												push core (white)

Appendix D: List of samples distributed for on-board and shore-based samples (as of May 31, 2004)

TS indicates a standard thin section size slab TS (Ig) indicates a large size thin section slab slab indicates a piece for analytical work at least 100 g in weight fractions indicate a proportion of the sample was distributed Mn indicates a sample of thick Mn slab or nodule TsMn indicates a thin section slab including Mn rind

Dive 823	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17
Dr. Yasuhiko Ohara																	
Dr. Sherman Bloomer		TS	TS	TS (lg)			TS (lg)	TS	TS (lg)						TS (lg)'	TS (lg)	TS
Dr. Teruaki Ishii		slab	slab			slab	slab	slab	slab	slab					slab	slab	slab
Dr. Jun-Ichi Kimura		slab					slab	slab							slab	slab	slab
Dr. Osamu Ishizuka		slab					slab+	slab							slab	slab	slab
Dr. Robert Stern														Mn ¹			
Dr. Mark Reagan		slab					slab	slab	TS					Mn ¹			
Dr. Katherine Kelley		slab					slab	slab	TS					Mn ¹			
Mr. Ulysses Hargrove III																	

* with carbonate ¹ - thick Mn slab

Dive 824	R5	R8	R9	R10	R11A	R11B	R12	R13	R14	R15	R16	R17	R18	R19	R20	R22
Dr. Yasuhiko Ohara																
Dr. Sherman Bloomer			TsMn	vith Mn	with Mn	rind	TS	with Mn	rindTS∖	with Mn	rind					
Dr. Teruaki Ishii	slab	slab	slab	slab	slab	slab	slab	slab	slab	slab			slab		slab	
Dr. Jun-Ichi Kimura	slab	slab	slab	slab	slab		slab	slab	slab	slab			slab		slab	
Dr. Osamu Ishizuka		slab	slab	slab	slab		slab	slab	slab	slab			slab		slab	
Dr. Robert Stern							TS(lg)							TS(lg)	TS(lg)	1/8
Dr. Mark Reagan	TS	TS	slab	slab	slab		TS	vith Mn	slab	slab		Mn ¹	TS	Mn ¹	TS	1/4
Dr. Katherine Kelley			slab		slab				slab						slab	
Mr. Ulysses Hargrove III		TS(lg)			TS(lg)		TS(lg)				TS(lg)					1/8

¹ - thick Mn slab

Dive 825	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15
Dr. Yasuhiko Ohara															
Dr. Sherman Bloomer				TS (lg)	TS				TS	TS	TS	TS		TS	TS
Dr. Teruaki Ishii	slab	slab	slab	slab	slab	slab	slab	slab	slab	slab	slab	slab	slab	slab	slab
Dr. Jun-Ichi Kimura	slab	slab	slab		slab	slab	slab	slab		slab		slab	slab		
Dr. Osamu Ishizuka			slab		slab	slab	slab	slab		slab		slab	slab		
Dr. Robert Stern					TS (lg)										TS (lg)
Dr. Mark Reagan			slab	TS	slab	slab	slab	TS	TS	TS	TS	slab	TS		TS
Dr. Katherine Kelley			slab		slab	slab						slab			
Mr. Ulysses Hargrove III		TS(lg)													

Dive 826	R3	R4	R5	R7	R8	R11	R13	R15	R16	R20	R21
Dr. Yasuhiko Ohara											
Dr. Sherman Bloomer		TS (lg)	TS (lg)	TS			TS (lg)				
Dr. Teruaki Ishii		slab	slab	slab	slab						slab
Dr. Jun-Ichi Kimura		slab	slab	slab	slab						slab
Dr. Osamu Ishizuka		slab	slab	slab	slab			TS			slab
Dr. Robert Stern			TS (lg)	TS (lg)	TS (lg)			TS (lg)			
Dr. Mark Reagan	TS	TS	TS	slab	slab	TS					slab
Dr. Katherine Kelley											
Mr. Ulysses Hargrove III								TS (lg)			

Note that Ohara, Haraguchi, Li, and Machida will work with samples allocated to Ishii, as appropriate Wortel will work with samples allocated to Reagan as appropriate

YK04-05 6K Dive 823:

YK04-05 6K#823-all samples

YK04-05 6K#823-R2

YK04-05 6K#823-R1

YK04-05 6K#823-R3

YK04-05 6K#823-R4

YK04-05 6K#823-R5

YK04-05 6K#823-R6

YK04-05 6K#823-R7

Appendix E (Dive 823 continued)

YK04-05 6K#823-R8

YK04-05 6K#823-R9

YK04-05 6K#823-R10

YK04-05 6K#823-R11

YK04-05 6K#823-R12

YK04-05 6K#823-R13

Appendix E (Dive 823 continued)

YK04-05 6K#823-R14

YK04-05 6K#823-R15

YK04-05 6K#823-R17

YK04-05 6K Dive 824:

YK04-05 6K#824-Tray 1

YK04-05 6K#824-Tray 2

YK04-05 6K#824-Tray 3

YK04-05 6K#824-Tray 4

Appendix E (Dive 824 continued)

YK04-05 6K#824-R1

YK04-05 6K#824-R2

YK04-05 6K#824-R3

YK04-05 6K#824-R5

YK04-05 6K#824-R7

YK04-05 6K#824-R4

YK04-05 6K#824-R6

YK04-05 6K#824-R8

Appendix E (Dive 824 continued)

YK04-05 6K#824-R9

YK04-05 6K#824-R11A

YK04-05 6K#824-R10

YK04-05 6K#824-R11B

YK04-05 6K#824-R12

YK04-05 6K#824-R14

YK04-05 6K#824-R13

YK04-05 6K#824-R15

Appendix E (Dive 824 continued)

YK04-05 6K#824-R16

YK04-05 6K#824-R17

YK04-05 6K#824-R18

YK04-05 6K#824-R19

YK04-05 6K#824-R20 Note that sample YK04-05 6K#824-R21 was lost

YK04-05 6K#824-R22

YK04-05 Dive 825

YK04-05 6K#825-Tray 1

YK04-05 6K#825-Tray 2

YK04-05 6K#825-Tray 3

YK04-05 6K#825-R1

YK04-05 6K#825-R2

YK04-05 6K#825-R3

YK04-05 6K#825-R4

YK04-05 6K#825-R5

YK04-05 6K#825-R6

Appendix E (Dive 825 continued)

YK04-05 6K#825-R7

YK04-05 6K#825-R9

YK04-05 6K#825-R8

YK04-05 6K#825-R10

YK04-05 6K#825-R11

YK04-05 6K#825-R12

YK04-05 6K#825-R14

Appendix E (Dive 825 continued)

YK04-05 6K#825-R15

YK04-05 Dive 826

YK04-05 6K#826-Tray 1

YK04-05 6K#826-Tray 3

YK04-05 6K#826-R2

YK04-05 6K#826-Tray 2

YK04-05 6K#826-R1

Appendix E (Dive 826 continued)

YK04-05 6K#826-R4

YK04-05 6K#826-R6

YK04-05 6K#826-R5

YK04-05 6K#826-R7

YK04-05 6K#826-R8

YK04-05 6K#826-R9

Appendix E (Dive 826 Continued)

YK04-05 6K#826-R10

YK04-05 6K#826-R11

YK04-05 6K#826-R12

YK04-05 6K#826-R13

YK04-05 6K#826-R14

YK04-05 6K#826-R15

Appendix E (Dive 826 Continued)

YK04-05 6K#826-R16

YK04-05 6K#826-R17

YK04-05 6K#826-R19

YK04-05 6K#826-R20

YK04-05 6K#826-R21

YK04-05 6K#826-C1