[95] Kwon, J., Ma, Hao, Giri, A., Hopkins, P.E., Shustova, N., Tian, Z., “Thermal Conductivity of Covalent-Organic Frameworks,” ACS Nano, 17, 16, 15222–15230 (2023).
[94] Thakur, S., Giri A., “Role of Anharmonicity in Dictating the Thermal Boundary Conductance across Interfaces Comprised of Two-Dimensional Materials” Physical Review Applied, 20, 014039 (2023).
[93] Giri, A., Walton, S.G., Tomko, J., Bhatt, N., Johnson, M.J., Boris, D.R., Lu, G., Caldwell, J.D., Prezhdo, O.V., Hopkins, P.E., “Ultrafast and nanoscale energy transduction mechanisms and coupled thermal transport across interfaces,” ACS Nano DOI: 10.1021/acsnano.3c02417 (2023).
[92] Thakur, S., Giri A., “Origin of ultralow thermal conductivity in metal halide perovskites” ACS Applied Materials and Interfaces, 15, 22, 26755–26765 (2023).
[91] Rahman, Md. A., Thakur, S., Giri A., “Engineering the electronic and thermal properties of two-dimensional covalent organic frameworks” Journal of Physical Chemistry C, 127, 23, 11157–11166 (2023).
[90] Dionne, J.C., Rahman, Md. A., Giri A., “Graphullerite: A Thermally Conductive and Remarkably Ductile Allotrope of Polymerize Carbon” ACS Omega, 8, 17, 15751-15758 (2023).
[89] Karna, P., Giri A., “Effect of intense laser irradiation on the thermal transport properties of metals” Physical Review B, 107, 9, 09431 (2023).
[88] Hoque, Md.S.B., Brummel, I., Hoglund, E.R., Dionne, C.J., Aryana, K., Tomko, J.A., Gaskins, J.T., Hirt, D., Smith, S.W., Beechem, T., Howe, J.M., Giri, A., Ihlefeld, J.F., Hopkins, P.E., “Interface independent sound speed and thermal conductivity of atomic layer deposition-grown amorphous AlN/Al2O3 multilayers with varying oxygen composition,” Physical Review Materials, 7, 2, 025401 (2023).
[87] Meirzadeh, E., Evans, A., Rezaee, M., Milich, M., Dionne, C., Darlington, T., Bao, S.T., Bartholomew, A., Handa, T., Rizzo, D., Wiscons, R., Reza, M., Zangiabadi A., Fardian-Melamed, N., Crowther, A., Schuck, P., Basov, D. Zhu, X., Giri, A., Hopkins, P.E., Kim, P., Steigerwald, M., Yang, J., Nuckolls, C., Roy, X., “A few-layer covalent network of fullerenes,” Nature, 613, 71-76 (2023).
[86] Karna, P., Hoque, MSB., Thakur, S., Hopkins, P.E., Giri, A., “Direct measurement of ballistic and diffusive electron transport in gold,” Nano Letters, 23, 2, 491-496, (2023).
[85] Rahman, Md. A., Dionne, C.J., Giri, A., “Thermally conductive self-healing nanoporous materials based on hydrogen-bonded organic frameworks,” Nano Letters, 21, 8534 (2022).
[84] Olson, D., Giri, A., Tomko, J., Gaskins, J., Ahmad, H., Doolittle, W.A., Hopkins, P.E., “Upper limits to thermal conductance across gallium nitride interfaces: Predictions and measurements,” Thermal Management of Gallium Nitride Electronics, Woodhead Publishing, pages 83-102 (2002).
[83] Thakur, S., Dai, Z., Karna, P., Padture, N. P., Giri, A., “Tailoring the Thermal Conductivity of Two-Dimensional Metal Halide Perovskites,” Materials Horizons 9, 3087 (2022).
[82] Giri, A., Thakur, S., Mattoni, A., “Molecular rotor-rotor heat diffusion at the origin of the enhanced thermal conductivity of hybrid perovskites at high temperatures,” Chemistry of Materials, 34, 21 (2022).
[81] Giri, A., Karna, P., Hopkins, P.E., “Exceptionally Enhanced Thermal Conductivity of Aluminum Driven by Extreme Pressures: A First-Principles Study,” Journal of Physical Chemistry Letters, 13, 10918–10923 (2022).
[80] Dionne, C.J., Giri, A., “Magnesium Doping Enhances Thermal Conductivity of Polymerized Fullerene Crystals,” Journal of Physical Chemistry C, 10 (2022).
[79] Thakur, S., Dionne, C.J., Karna, P., King, S.W., Lanford, W., Li, H., Banerjee, S., Merrill, D., Hopkins, P.E., Giri, A., “Density and atomic coordination dictate vibrational characteristics and thermal conductivity of amorphous silicon carbide,” Physical Review Materials 6, 094601 (2022).
[78] Rahman, Md.A., Dionne, C., Giri, A., “Pore Size Dictates Anisotropic Thermal Conductivity of Two-Dimensional Covalent Organic Frameworks with Adsorbed Gases,” ACS Appl. Mater. Interfaces, 18, 21687–21695 (2022).
[77] Dionne, C., Rahman, M., Hopkins, P.E., Giri, A., “Supramolecular interactions lead to remarkably high thermal conductivities in interpenetrated two-dimensional porous crystals,” Nano Letters 22, 7, 3071 (2022).
[76] DeCoster, M.E., Babaei, H., Jung, S.S., Hassan, Z., Gaskins, J.T., Giri, A., Tiernan, E., Tomko, J.A., Baumgart, H., Norris, P.M., McGaughey, A.J.H., Wilmer, C., Redel, E., Giri, G., Hopkins, P.E, “Hybridization from Guest–Host Interactions Reduces the Thermal Conductivity of Metal–Organic Frameworks,” Journal of the American Chemical Society 144, 8 (2022).
[75] Giri, A., Evans, A., Rahman, M., McGaughey, A.J.H., Hopkins, P.E., “Highly negative Poisson’s ratio in thermally conductive covalent organic frameworks,” ACS Nano 16, 2843 (2022).
[74] Giri, A., Dionne, C.J., Hopkins, P.E., “Atomic coordination dictates vibrational characteristics and thermal conductivity in amorphous carbon,” npj Computational Materials 55 (2022).
[73] Hopkins, P.E., Tomko, J.A., Giri, A., “Quasi-harmonic theory for phonon thermal boundary conductance at high temperatures,” Journal of Applied Physics 131, 015101 (2022).
[72] Rahman, Md. A., Giri, A., “Uniquely anisotropic mechanical and thermal responses of hybrid organic–inorganic perovskites under uniaxial strain,” J. Chem. Phys. 155, 124703 (2021).
[71] Giri, A., Hopkins, P.E., “Heat transfer and tunable thermal conductivity anisotropy in two-dimensional covalent organic frameworks with adsorbed gases,” Nano letters 21, 6188-6193 (2021).
[70] Evans, A.M.,* Giri, A.,* Sangwan, V.K., Xun, S., Bartnof, M., Torres-Castanedo, C.G., Balch, H.B., Rahn, M.S., Bradshaw, N.P., Vitaku, E., Burke, D.W., Li, H., Bedzyk, M.J., Wang, F., Bredas, J.-L., Malen, J.A., McGaughey, A.J.H., Hersam, M.C., Dictel, W.R., Hopkins, P.E., “Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks,” Nature Materials 20, 1142-1148 (2021), *Joint First Authors.
[69] Giri, A. “Origins of pressure-induced enhancement in thermal conductivity of hybrid inorganic- organic perovskites”, Nanoscale, 13 (2), 685-691 (2021).
[68] Donovan, B. F., Warzoha, R. J., Cosby, T., Giri, A., Wilson, A. A., Borgdorff, A. J., Vu, N. T., Patterson, E. A., Gorzkowski, E. P. “Strained Polymer Thermal Conductivity Enhancement Counteracted by Additional Off-Axis Strain”, Macromolecules, 53, 11089-11097 (2020).
[67] Bruan, J.L., King, S.W., Hoglund, E.R., Gharacheh, M.A., Scott, E.A., Giri, A., Tomko, J.A., Gaskins, J.T., Al-kukhun, A., Bhattarai, G., Paquette, M.M., Chollon, G., Willey, B., Antonelli, G.A., Gidley, D.W., Hwang, J., Howe, J.M., Hopkins, P.E., “Hydrogen effects on the thermal conductivity of delocalized vibrational modes in amorphous silicon nitride (a-SiNx:H),” Physical Review Materials 5, 035604 (2021).
[66] Giri, A., Cheaito, R., Gaskins, J.T., Mimura, T., Brown-Shaklee, H., Medlin, D., Ihlefeld, J., Hopkins, P.E., “Thickness independent vibrational thermal conductance across confined solid-solution thin films,” ACS Applied Materials & Interfaces 13, 12541-12549 (2021).
[65] Aryana, K., Gaskins, J.T., Nag, J., Stewart, D.A., Bai, Z., Mukhopadhyay, S., Read, J.C., Olson, D.H., Hoglund, E.R., Howe, J.M., Giri, A., Grobis, M.K., Hopkins, P.E., “Interface controlled thermal properties of ultra-thin chalcogenide-based phase change memory devices,” Nature Communications 12, 774 (2021).
[64] Warzoha, R.J., Wilson, A.A., Donovan, B.F., Donmezer, N., Giri, A., Hopkins, P.E., Choi, S., Pahinkar, D., Shi, J., Graham, S., Tian, Z., Ruppalt, L., “Applications and impacts of nanoscale heat transport in electronics packaging,” Journal of Electronic Packaging 143, 020804 (2021).
[63] Rasel, Md.A.J., Giri, A., Olson, D.H., Ni, C., Hopkins, P.E., Feser, J., “Chain length dependence of thermal conductivity in 2D alkylammonium lead iodide single crystals,” ACS Applied Materials & Interfaces 12, 53705-53711 (2020).
[62] Krahl, F., Giri, A., Hoque, Md.S.B., Sederholm, L., Hopkins, P.E., Karppinen, M., “Experimental control and statistical analysis of thermal conductivity in ZnO-benzene multilayer thin films,” The Journal of Physical Chemistry C 124, 24731-24739 (2020).
[61] Koh, Y.-R., Cheng, Z., Mamum, A., Hoque, Md. S. B., Liu, Z., Bai, T., Hussain, K., Liao, M. E., Li, R., Gaskins, J.T., Giri, A., Tomko, J., Braun, J.L., Gaevski, M., Lee, E., Yates, L., Goorsky, M.S., Luo, T., Khan, A., Graham, S., Hopkins, P.E., “Bulk-like intrinsic phonon thermal conductivity of micrometer thick AlN films,” ACS Applied Materials & Interfaces 12, 29443-29450 (2020).
[60] Giri, A., Chou, S.S., Drury, D.E., Tomko, K.Q., Olson, D.H., Gaskins, J.T., Kaehr, B., Hopkins, P.E., “Molecular tail chemistry controls thermal transport in fullerene films,” Physical Review Materials 4, 065404 (2020).
[59] Giri, A., Chen, A., Mattoni, A., Aryana, K., Zhang, D., Hu, X., Lee, S.-H, Choi, J., Hopkins, P.E., “Ultralow thermal conductivity of two-dimensional metal halide perovskites,” Nano Letters 20, 3331-3337 (2020).
[58] Giri, A., Hopkins, P.E., “Achieving a better heat conductor,” Nature Materials 19, 481-490 (2020). *Invited News and Views.
[57] Giri, A., Hopkins, P.E., “A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces,” Advanced Functional Materials 30, 1903857 (2020).
[56] Giri, A., Tokina, M.V., Prezhdo, O.V., Hopkins, P.E., “Electron-phonon coupling and related transport properties of metals and intermetallic alloys from first principles,” Materials Today Physics 12, 100175 (2020).
[55] Wang, Y.-S., Zhou, X., Tomko, J.A., Giri, A., Hopkins, P.E., Prezhdo, O.V., “Electron-phonon relaxation at Au/Ti interfaces is robust to alloying: Ab initio nonadiabatic molecular dynamics,” The Journal of Physical Chemistry C 123, 22842-22850 (2019).
[54] Giri, A., Hopkins, P.E., “Resonant phonon modes in fullerene functionalized graphene lead to large tunability of thermal conductivity without impacting the mechanical properties,” Journal of Applied Physics 125, 205102 (2019).
[53] Giri, A., Gaskins, J.T., Li, L., Wang, Y.-S., Prezhdo, O.V., Hopkins, P.E., “First principles determination of ultrahigh electrical and thermal conductivity in free electron metals via pressure tuning the electron-phonon coupling factor,” Physical Review B 99, 165139 (2019).
[52] Tomko, J.A., Olson, D.H., Giri, A., Gaskins, J.T., O’Malley, S.M., Hopkins, P.E., “Nanoscale wetting and energy transmission at solid-liquid interfaces,” Langmuir 35, 2106-2114 (2019).
[51] Giri, A., Braun, J., Shima, D., Addamane, S., Balakrishnan, G., Hopkins, P.E., “Experimental Evidence of Suppression of Sub-Terahertz Phonons and Thermal Conductivity in GaAs/AlAs Superlattices Due to Extrinsic Scattering Processes,” The Journal of Physical Chemistry C 122, 29577-29585 (2018).
[50] Giri, A., Tomko, J.A., Gaskins, J.T., Hopkins, P.E., “Large tunability in the mechanical and thermal properties of carbon nanotube-fullerene hierarchical monoliths,” Nanoscale 10, 22166-22172 (2018).
[49] Gaskins, J.T., Kotsonis, G., Giri, A., Ju, S., Rohskopf, A., Wang, Y., Bai, T., Sachet, E., Shelton, C.T., Liu, Z., Cheng, Z., Foley, B.M., Graham, S., Luo, T., Henry, A., Goorsky, M.S., Shiomi, J., Maria, J.-P., Hopkins, P.E., “Thermal boundary conductance across heteroepitaxial ZnO/GaN interfaces: Assessment of the phonon gas model,” Nano Letters 18, 7469-7477 (2018).
[48] Radue, E.L., Tomko, J.A., Giri, A., Braun, J.L., Zhou, X., Prezhdo, O.V., Runnerstrom, E.L., Maria, J.-P., Hopkins, P.E., “Hot electron thermoreflectance coefficient of gold during electron-phonon nonequilibrium,” ACS Photonics 5, 4880-4887 (2018).
[47] Scott, E.A., Smith, S.W., Henry, M.D., Rost, C.M., Giri, A., Gaskins, J.T., Fields, S.S., Jaszewski, S.T., Ihlefeld, J.F., Hopkins, P.E., “Thermal resistance and heat capacity in hafnium zirconium oxide (Hf1-xZrxO2) dielectrics and ferroelectric thin films,” Applied Physics Letters 113, 192901 (2018).
[46] Alaie, S., Baboly, M.G., Jiang, Y.-B., Rempe, S., Anjum, D.H., Chaieb, S., Donovan, B.F., Giri, A., Szwejkowski, C.J., Gaskins, J.T., Elahi, M.M.M., Goettler, D.F., Braun, J., Hopkins, P.E., Leseman, Z.C., “Reduction and increase in thermal conductivity of Si irradiated with Ga+ via focused ion beam,” ACS Applied Materials & Interfaces 10, 37679-37684 (2018).
[45] Braun, J.L., Rost, C.M., Lim, M., Giri, A., Olson, D.H., Kotsonis, G., Stan, G., Brenner, D.W., Maria, J.-P., Hopkins, P.E., “Charge induced disorder controls the thermal conductivity of entropy stabilized oxides,” Advanced Materials 30, 1805004 (2018).
[44] Giri, A., King, S.W., Lanford, W.A., Mei, A.B., Merrill, D., Li, L., Oviedo, R., Richards, J., Olson, D.H., Braun, J.L., Gaskins, J.T., Deangelis, F., Henry, A., Hopkins, P.E., “Interfacial defect vibrations enhance thermal transport in amorphous multilayers with ultrahigh thermal boundary conductance,” Advanced Materials 30, 1804097 (2018).
[43] Giri, A., Hopkins, P.E., “Giant reduction and tunability of the thermal conductivity of carbon nanotubes through low frequency resonant modes,” Physical Review B 98, 045421 (2018).
[42] Walton, S.G., Foley, B.M., Tomko, J., Boris, D.R., Gillman, E.D., Hernandez, S.C., Giri, A., Petrova, Tz.B., Hopkins, P.E., “Plasma-surface interactions in atmospheric pressure plasmas: In situ measurements of electron heating in materials,” Journal of Applied Physics 124, 043301 (2018). PDF. *Editor’s Pick
[41] Giri, A., Donovan, B.F., Hopkins, P.E, “Localization of vibrational modes leads to reduced thermal conductivity of amorphous heterostructures,” Physical Review Materials 2, 056002 (2018).
[40] Donovan, B., Jensen, W.A., Chen, L., Giri, A., Poon, S.J., Floro, J.A., Hopkins, P.E., “Elastic mismatch induced reduction of the thermal conductivity of silicon with aluminum nano-inclusions,” Applied Physics Letters 112, 213103 (2018).
[39] DeCoster, M.E., Meyer, K.E., Piercy, B.D., Gaskins, J.T., Donovan, B.F., Giri, A., Strnad, N.A., Potrepka, D.M., Wilson, A.A., Losego, M.D., Hopkins, P.E., “Density and size effects on the thermal conductivity of atomic layer deposited TiO2 and Al2O3 thin films,” Thin Solid Films 650, 71-77 (2018).
[38] Krahl, F., Giri, A., Tomko, J.A., Tynell, T., Hopkins, P.E., Karppinen, M., “Thermal conductivity reduction at inorganic-organic interfaces: From regular superlattices to irregular gradient layer sequences,” Advanced Materials Interfaces 5, 1701692(2018).
[37] Freedy, K., Giri, A., Foley, B., Barone, M., Hopkins, P.E., McDonnell, S.J., “Titanium contacts to graphene: Process-induced variability in electronic and thermal transport,” Nanotechnology 29, 145201 (2018).
[36] Giri, A., Braun, J.L., Hopkins, P.E., “Reduced dependence of thermal conductivity on temperature and pressure of multi-atom component crystalline solid solutions,” Journal of Applied Physics 123, 015106 (2018).
[35] Braun, J.L., Szwejkowski, C.J., Giri, A., Hopkins, P.E., “On the steady-state temperature rise during laser heating of multilayer thin films in optical pump-probe techniques,” Journal of Heat Transfer 140, 052801 (2018).
[34] Giri, A., Hopkins, P.E., “Pronounced low-frequency vibrational thermal transport in C60 fullerite realized through pressure-dependent molecular dynamics simulations,” Physical Review B 96, 220303(R) (2017).
[33] Zhou, X., Jankowska, J., Li, L., Giri, A., Hopkins, P.E., Prezhdo, O. “Strong Influence of Ti Adhesion Layer on Electron-Phonon Relaxation in Thin Gold Films: Ab Initio Nonadiabatic Molecular Dynamics,” ACS Applied Materials & Interfaces 9, 43343 (2017).
[32] Rost, C.M., Braun, J.L., Ferri, K., Backman, L., Giri, A., Opila, E., Maria, J.-P., Hopkins, P.E., “Hafnium nitride films for thermoreflectance transducers at high temperatures: Potential based on heating from laser absorption,” Applied Physics Letters 111, 151902 (2017).
[31] Giri, A., Hopkins, P.E., “Role of interfacial mode coupling of optical phonons on thermal boundary conductance,” Scientific Reports 7, 11011 (2017).
[30] Zhou, X., Li, L., Dong, H., Giri, A., Hopkins P.E., Prezhdo, O.V., “Temperature dependence of electron-phonon coupling interactions in gold films rationalized by time-domain ab initio analysis,” Journal of Physical Chemistry C 121, 17488-17497 (2017).
[29] Tomko, J.A., Giri, A., Donovan, B.F., Bubb, D.M., O’Malley, S.M., Hopkins, P.E., “Energy confinement and thermal boundary conductance effects on short-pulsed thermal ablation thresholds in thin films,” Physical Review B 96, 014108 (2017).
[28] Giri, A., Braun, J.L., Rost, C.M., Hopkins, P.E., “On the minimum limit to thermal conductivity of multi-atom component crystalline solid solutions based on impurity mass scattering,” Scripta Materialia 138, 134-138 (2017).
[27] Giri, A., Braun, J.L., Tomko, J.A., Hopkins, P.E., “Reducing the thermal conductivity of chemically ordered binary alloys below the alloy limit via the alteration of phonon dispersion relations,” Applied Physics Letters 110, 233112 (2017).
[26] Giri, A., Hopkins, P.E., “Spectral Contributions to the Thermal Conductivity of C60 and the Fullerene Derivative PCBM,” Journal of Physical Chemistry Letters 8, 2153-2157 (2017).
[25] Donovan, B.F., Tomko, J.A., Giri, A., Olson, D.H., Braun, J.L., Gaskins, J.T., Hopkins, P.E., “Localized thin film damage sourced and monitored via pump-probe modulated thermoreflectance,” Review of Scientific Instruments 88, 054903 (2017).
[24] Szwejkowski, C.J., Giri, A., Kaehr, B., Warzoha, R.J., Donovan, B.F., Hopkins, P.E., “Molecular tuning of the vibrational thermal transport mechanisms in fullerene derivative solutions,” ACS Nano 11, 1389-1396 (2017).
[23] Jin, H., Marin, G., Giri, A., Tynell, T., Gastranius, M., Wilson, B.P., Kontturi, E., Tammelin, T., Hopkins, P.E., Karppinen, M., “Strongly reduced thermal conductivity in hybrid ZnO/nanocellulose thin films,” Journal of Materials Science 52, 6093-6099 (2017).
[22] Braun, J.F., King, S.W., Giri, A., Gaskins, J.T., Sato, M., Fujiseki, T., Fujiwara, H., Hopkins, P.E., “Breaking network connectivity leads to ultralow thermal conductivities in fully dense amorphous solids,” Applied Physics Letters 109, 191905 (2016).
[21] Giri, A., Braun, J.L., Hopkins, P.E., “Spectral contributions to thermal boundary conductance across solid, liquid and gas interface: A molecular dynamics simulations,” Journal of Physical Chemistry C 120, 24847-24846 (2016).
[20] Wang, L., Cheaito, R., Braun, J.L., Giri, A., Hopkins, P.E., “Thermal conductivity measurements of non-metals via combined time- and frequency-domain thermoreflectance without a metal film transducer,” Review of Scientific Instruments 87, 094902 (2016).
[19] Giri, A., Wee, S.-H., Jain, S., Hellwig, O., Hopkins, P.E., “Influence of chemical ordering on the thermal conductivity and electronic relaxation in FePt thin films in heat assisted magnetic recording applications,” Scientific Reports 6, 32077 (2016).
[18] Giri, A., Braun, J.L., Hopkins, P.E., “Effect of crystalline/amorphous interfaces on thermal transport across confined thin films and superlattices,” Journal of Applied Physics 119, 235305 (2016).
[17] Braun, J.L., Baker, C.H., Giri, A., Elahi, M., Artyushkova, K., Beechem, T.E., Norris, P.M., Leseman, Z.C., Gaskins, J.T., Hopkins, P.E., “Size effects on the thermal conductivity of amorphous silicon thin films,” Physical Review B 93, 140201(R) (2016).
[16] Giri, A., Niemela, J.-P., Tynell, T., Gaskins, J.T., Donovan, B.F., Karppinen, M., Hopkins, P.E., “Heat-transport mechanisms in molecular building blocks of inorganic/organic hybrid superlattices,” Physical Review B 93, 115310 (2016).
[15] Giri, A., Hopkins, P.E., “Analytical model for thermal boundary conductance and equilibrium thermal accommodation coefficient at solid/gas interfaces,” The Journal of Chemical Physics 144, 084705 (2016).
[14] Giri, A., Niemela, J.-P., Szwejkowski, C.J., Karppinen, M., Hopkins, P.E., “Reduction in thermal conductivity and tunable heat capacity of inorganic/organic hybrid superlattices,” Physical Review B 93, 024201 (2016).
[13] Giri, A., Hopkins, P.E., “Transient thermal and nonthermal electron and phonon relaxation after short-pulsed laser heating of metals,” Journal of Applied Physics 118, 215101 (2015).
[12] Giri, A., Hopkins, P.E., Wessel, J. G., Duda, J.C., “Kapitza resistance and the thermal conductivity of amorphous superlattices,” Journal of Applied Physics 118, 165303 (2015).
[11] Niemela, J.-P., Giri. A., Hopkins, P.E., Karppinen, M., “Ultra-low thermal conductivity in TiO2:C superlattices,” Journal of Materials Chemistry A 3, 11527-11532 (2015).
[10] Giri, A., Gaskins, J.T., Donovan, B.F., Szwejkowski, C., Warzoha, R., Rodriguez, M.A., Ihlefeld, J., Hopkins, P.E., “Mechanisms of nonequilibrium electron-phonon coupling and thermal conductance at metal/non-metal interfaces,” Journal of Applied Physics 117, 105105 (2015).
[9] Szwejkowski, C., Creange, N., Sun, K., Giri, A., Donovan, B.F., Constantin, C., Hopkins, P.E., “Size effects in the thermal conductivity of gallium oxide (beta-Ga2O3) films grown via open-atmosphere annealing of gallium nitride (GaN),” Journal of Applied Physics 117, 084308 (2015).
[8] Giri, A., Gaskins, J.T., Foley, B.M., Cheaito, R., Hopkins, P.E., “Experimental observation of the temperature dependence of nonequilibrium electron dynamics on electron-phonon coupling in thin gold films,” Journal of Applied Physics 117, 044305 (2015).
[7] Cheaito, R., Gaskins, J.T., Caplan, M.E., Donovan, B.F., Foley, B.M., Giri, A., Duda, J.C., Szwejkowski, C.J., Constantin, C., Brown-Shaklee, H.J., Ihlefeld, J.F., Hopkins, P.E., “Thermal boundary conductance accumulation and interfacial phonon transmission: measurements and theory,” Physical Review B 91, 035423 (2015).
[6] Giri, A., Hopkins, P.E., “Spectral analysis of thermal boundary conductance across solid/classical liquid interfaces: a molecular dynamics study,” Applied Physics Letters 105, 033106 (2014).
[5] Tynell, T. Giri, A., Gaskins, J., Hopkins, P.E., Mele, P., Miyazaki, K., Karppinen, M., “Efficiently suppressed thermal conductivity in ZnO thin films via periodic introduction of organic layers,” Journal of Materials Chemistry A 2, 12150-12152 (2014).
[4] Giri, A., Foley, B.M., Hopkins, P.E., “Influence of hot electron scattering and electron-phonon interactions on thermal boundary conductance at metal/non-metal interfaces,” Journal of Heat Transfer 136, 092401 (2014).
[3] Caplan, M.E., Giri, A., Hopkins, P.E., “Analytical model for the effects of wetting on thermal boundary conductance across solid/classical liquid interfaces,” The Journal of Chemical Physics 140, 154701 (2014).
[2] Giri, A., Tao, J., Kirca, M., To, A. C., “Compressive behavior and deformation mechanism of nanoporous open-cell foam with ultrathin ligaments” Journal of Micromechanics and Nanomechanics, 4, SPECIAL ISSUE: Mechanics of Nanocomposites and Nanostructure, A4013012 (2014).
[1] A. Giri, J. Tao, M. Kirca, and A. C. To, “Mechanics of nanoporous metals,” in Handbook of Micromechanics and Nanomechanics, edited by S. Li and X. L. Gao (Pan Stanford, Singapore), pp. 827-862, 2013