- Associate Professor
- Civil and Environmental Engineering
- 401.874.5637
- sumanta_das@uri.edu
- Office Location: Fascitelli Center for Advanced Engineering 211
- Lab: Multiscale & Multiphysics Mechanics of Materials Research Laboratory
Recent Grants1
Grant |
---|
12/21/2021. Co-PI. URI Research Foundation. “Strain Sensing Scrims for Composite Monitoring.” |
9/14/2021. Co-PI. University of Maine/US Department of Transportation. “Design and Development of High-Performance Composites for Improved Durability of Bridges in Rhode Island.” |
9/14/2021. Co-PI. University of Maine/US Department of Transportation. “Enhancing the Durability of Bridge Decks by Incorporating Microencapsulated Phase Change Materials (PCMs) in Concrete.” |
7/16/2021. Co-PI. Goetz Composites, Office of Naval Research. “Navy SBIR Phase II Technology Acceleration Project, Topic, N204-A03, on 3D Printed Unmanned Undersea Vehicles.” |
6/11/2021. PI. Goetz Composites, Office of Naval Research. “Computational Modeling for Analysis of Payload Section Laminated Hull.” |
3/6/2021. Co-PI. Nautilus Defense, Department of Defense. “STTR: Phase I: Composite-Integrated Electrical Networks for Volume-Optimized Airframes.” |
2/9/2021. Co-PI. University of Connecticut, Office of Naval Research. “NIUVT 2020 COMP 28: Advanced Polymer Composite Structures for Tuned Acoustic and Impact Attenuation” |
1/8/2021. Co-PI. 401 Tech Bridge. “Electromechanical Testing of Novel Textile-Integrated Systems: Nautilus Defense” |
1/7/2021. PI. 401 Tech Bridge. “Modeling of Hybrid Overmolded Thermoplastic Composites: txV Aero Composites” |
8/14/2020. Co-PI. Goetz Composites, RI Commerce Voucher. “Finite Element Analysis to Evaluate the Performance of a Composite Pressure Vessels Subjects to Full Ocean Depth Pressures.” |
6/8/2020. Co-PI. Goetz Composites, RI Commerce Voucher. “Finite Element Analysis to Evaluate the Performance of a Composite Pressure Vessels Subjects to Full Ocean Depth Pressures.” |
5/14/2020. Co-PI. Department of Defense, Nautilus. “STTR: Phase I: Feasibility Study- Development of an operationally relevant real time in-situ Health Monitoring System.” |
8/30/2017. PI. Rhode Island Marine Trade Association. “Phase 1: Composite Materials for Bridges in Rhode Island.” |
8/17/2017. PI. Rhode Island Marine Trade Association. “Phase 1: Composite Materials for Bridges in Rhode Island.” |
Recent Publications1
Citation |
---|
Doner S, Paswan R, Das S. The influence of metallic particulate inclusions on the mechanical and thermal performance of 3D printable acrylonitrile-butadiene-styrene/thermoplastic polyurethane fused polymer blends. Materials Today Communications, 2023; 106111. doi: 10.1016/j.mtcomm.2023.106111 |
Li HWX, Lyngdoh G, Krishnan NMA, Das S. Machine Learning guided design of microencapsulated phase change materials incorporated concretes for enhanced freeze-thaw durability. Cement and Concrete Composites, 2023; 105090. doi: 10.1016/j.cemconcomp.2023.105090 |
Doner S, Villada JT, Das S. Improving the Creep Resistance of Hardened Cement Paste through the addition of Wollastonite Microfibers: Evaluation Using the Micro-Indentation Technique. Applied Sciences, 2023; 13(5), 2933. doi: 10.3390/app13052933 |
Chaudhary B, Matos H, Das S, Owens J. Multifunctional Carbon/Epoxy Composites with Power Transmission Capabilities. Materials Today Communications, 2023; 105665. doi: 10.1016/j.mtcomm.2023.105665 |
Lyngdoh GA, Das S. Elucidating the Interfacial Bonding Behavior of Over-Modeled Hybrid Fiber Reinforced Polymer Composites: Experiment and Multiscale Numerical Simulation. ACS Applied Materials & Interfaces, 2022. doi: 10.1021/acsami.2c09881 |
Pittie T, Kunwar G, Das S, Jain J, Anoop KNM. Determining the threshold displacement energy of magnesium using molecular dynamics simulation. Bulletin of Materials Science, 2022; 45(3), 1-7. doi: 10.1007/s12034-022-02737-x |
Doner S, Lyngdoh GA, Nayak S, Das S. Fracture response of wollastonite fiber-reinforced cementitious composites: Evaluation using micro-indentation and finite element simulation. Ceramics international, 2022. doi: 10.1016/j.ceramint.2022.02.083 |
Lyngdoh GA, Zaki M, Krishnan NMA, Das S. Prediction of concrete strengths enabled by missing data imputation and interpretable machine learning. Cement and Concrete Composites, 2022; 104414. doi: 10.1016/j.cemconcomp.2022.104414 |
Nayak S, Lyngdoh GA, Shukla A, Das S. Predicting the Near Field Underwater Explosion Response of Coated Composite Cylinders using Multiscale Simulations, Experiments, and Machine Learning. Composite Structures, 2022; 11517. doi: 10.1016/j.compstruct.2021.115157 |
Lyngdoh GA, Kelter NK, Doner S, Krishnan NMA, Das S. Elucidating the auxetic behavior of cementitious cellular composites using fine element analysis and interpretable machine learning. Materials & Design, 2022; 213, 110341. doi: 10.1016/j.matdes.2021.110341 |
Lyngdoh GA, Das S. Integrating multiscale numerical simulations with machine learning to predict the strain sensing efficiency of nano-engineered smart cementitious composites. Materials & Design, 2021; 209, 109995. doi: 10.1016/j.matdes.2021.109995 |
Lyngdoh GA, Doner S, Nayak S, Das S. Finite Element-Based Numerical Simulations to Evaluate the Influence of Wollastonite Microfibers on the Dynamics Compressive Behavior of Cementitious Composites. Materials, 2021; 14(16), 4435. doi: 10.3390/ma14164435 |
Nayak S, Das S. Strain sensing efficiency of hierarchical nano-engineered smart twill-weave composites: Evaluations using multiscale numerical simulations. Composite Structures, 2021; 255, 112905. doi: 10.1016/j.compstruct.2020.112905 |
Lyngdoh GA, Li H, Zaki M, Krishnan NMA, Das S. Elucidating the constitutive relationship of calcium-silicate-hydrate gel using high throughput reactive molecular simulations and machine learning. Scientific Reports, 10(1), 1-15. doi: 10.38/s41598-020-78368-1 |
Lyngdoh GA., Nayak S., Krishnan NMA., Das S. Fracture toughness of fly ash-based geopolymer gels: Evaluations using nanoindentation experiment and molecular dynamics simulation. Construction and Building Materials, 2020; 262, 120797. doi: 10.1016/j.conbuildmat.2020.120797 |
Nayak S, Das S. Strain sensing efficiency of hierarchical nano-engineered smart twill-weave composites: Evaluations using multiscale numerical simulations. Composite Structures, 2020; 255, 112905. doi: 10.1016/j.compstruct.2020.112905 |
Lyngdoh GA, Kumar R, Krishnan NMA, Das S. Dynamics of Confined Water and its Interplay with Alkali Cations in Sodium Aluminosilicate Hydrate Gel: Insights from Reactive Force Field Molecular Dynamics. Physical Chemistry Chemical Physics, 2020; 22, 23707-23724. doi: 10.1039/D0CP04646A |
Lyngdoh GA, Nayak S, Kumar R, Anoop Krishnan NM, Das S. Fracture toughness of sodium aluminosilicate hydrate (NASH) gel: Insights from molecular dynamics simulations. Journal of Applied Physics, 2020; 127(16), 165107. doi: 10.1063/1.5144876 |
Bhaskar P, Kumar R, Maurya Y, et al. Cooling rate effects on the structure of 45S5 bioglass: Insights from experiments and simulations. Journal of Non-Crystalline Solids, 2020; 534, 119952. doi: 10.1016/j.jnoncrysol.2020.119952 |
Nayak S, Ravinder R, Krishnan NM, Das S. A Peridynamics-Based Micromechanical Modeling Approach for Random Heterogeneous Structural Materials. Materials, 2020; 13, 1298. doi: 10.3390/ma13061298 |
Doner S, Nayak S, Senol K, et al. Dynamic Compressive Behavior of Metallic Particulate-reinforced Cementitious Composites: SHPB Experiments and Numerical Simulations. Construction and Building Materials, 2019; 227, 116668. doi: 10.1016/j.conbuildmat.2019.08.049 |
Rivera J, Berjikian J, Ravinder R, et al. Glass Fracture upon Ballistic Impact: New Insights from Peridynamics Simulations. Frontiers in Materials, 2019; 6, 239. doi: 10.3389/fmats.2019.00239 |
Akturk B, Nayak S, Das S, Kizilkana AB. Microstructure and Strength Development of Sodium Carbonate-Activated Blast Furnace Slags. Journal of Materials in Civil Engineering, 2019; 31(11), 04019283. doi: 10.1061/(ASCE)MT.1943-5533.0002944 |
Lyngdoh GA, Kumar RK, Anoop Krishnan NM, Das S. Realistic Atomic Structure of Fly Ash-Based Geopolymer Gels: Insights from Molecular Dynamics Simulations. Journal of Chemical Physics, 2019; 151(6), 064307. doi: 10.1063/1.5121519 |
Nayak S, Das S. Spatial Damage Sensing Ability of Metallic Particulate-Reinforced Cementitious Composites: Insights from Electrical Resistance Tomography. Materials & Design, 2019; 175, 107817. doi: 10.1016/j.matdes.2019.107817 |
Nayak S, Lyngdoh GA, Das S. Influence of Microencapsulated Phase Change Materials (Pcms) On the Chloride Ion Diffusivity of Concretes Exposed to Freeze-Thaw Cycles: Insights from Multiscale Numerical Simulations. Construction and Building Materials. 2019; 212, 317-328. doi: 10.1016/j.conbuildmat.2019.04.003 |
Nayak S, Krishnan NM, Sumanta D. Microstructure-Guided Numerical Simulation to Evaluate the Influence of Phase Change Materials (Pcms) On the Freeze-Thaw Response of Concrete Pavements. Construction and Building Materials. 2019; 201, 246-256. doi: 10.1016/j.conbuildmat.2018.12.199 |
Nayak S, Krishnan NM, Sumanta D. Fracture Response of Metallic Particulate-Reinforced Cementitious Composites: Insights from Experiments and Multiscale Numerical Simulations. Cement and Concrete Composites. 2019; 97, 154-165. doi: 10.1016/j.cemconcomp.2018.12.026 |
Nayak S, Das S. A Microstructure-Guided Numerical Approach to Evaluate Strain Sensing and Damage Detection Ability of Random Heterogeneous Self-Sensing Structural Materials. Computational Materials Science. 2019; 156, 195-205. doi: 10.1016/j.commatsci.2018.09.035 |
Das S, Aguayo M, Kabay N, Mobasher B, Sant G, Neitalath N. Elucidating the Influences of Compliant Microscale Inclusions on The Fracture Behavior of Cementitious Composites. Cement and Concrete Composites. 2018; 94, 12-23. doi: 10.1016/j.cemconcomp.2018.08.009 |
Das S, Aguayo M, Rajan SD, Sant G, Neithalath N. Microstructure-Guided Numerical Simulations to Predict the Thermal Performance of a Hierarchical Cement-Based Composite Material. Cement and Concrete Composites. 2018; 87, 20-28. doi: 10.1016/j.cemconcomp.2017.12.003 |
Dakhane A, Das S, Hansen H, et al. Crack Healing in Cementitious Mortars Using Enzyme-Induced Carbonate Precipitation: Quantification Based on Fracture Response. Journal of Materials in Civil Engineering. 2018; 30(4), 04018035. doi: 10.1061/(ASCE)MT.1943-5533.0002218 |
1view our research profile criteria