Cecioni C, Iorio V, Bellotti G, Grilli ST. Probabilistic Landslide tsunami modeling of the 1028 Palu Bay Event. Coastal Engineering, 2023; 183(9), 104332. Doi: 10.1016/j.coastaleng.2023.104332 |
Mohanlal S, Harris JC, Yates ML, Grilli ST. Unified depth-limited wave breaking detection and dissipation in fully nonlinear potential flow models. Coastal Engineering, 2023; 183(9), 104316, doi: 10.1016/j.coastaleng.2023.104316 |
O’Reilly CM, Grilli ST, Janben CF, Dahl JM, Harris JC. Hybrid Lattice-Boltzmann-Potential Flow Simulations of Turbulent flow around Submerged Structures. Journal of Marine Science and Engineering, 2022; 10(11), 1651. doi: 10.3390/jmse10111651 |
Choi YK, Shi F, Malej M, Smith JM, Kirby JT, Grilli ST. Block-structured, equal-workload, multi-grid-nesting interface for the Boussinesq wave model FUNWAVE-TVD (Total Variation Diminishing), Geoscientific Model Development, 2022; 15(14), 5441-5459. doi: 10.5194/gmd-15-5441-2022 |
Sassa S, Grilli ST, Tappin DR, et al. Understanding and reducing the disaster risk of landslide-induced tsunamis: a short summary of the panel discussion in the World Tsunami Awareness Day Special Event of the Fifth World Landside Forum. Landslides, 2022; 19(2). doi: 10.1007/s10346-021-01819-x |
Cutler KS, Watt SFL, Cassidy M, et al. Downward-propagating eruption following vent unloading implies no direct magmatic trigger for the 2018 lateral collapse of Anak Krakatau. Earth and Planetary Science Letters, 2022; 578, 117332. doi: 10.1016/j.epsl.2021.117332 |
Kirby JT, Grilli ST, Horrillo J, et al. Validation and inter-comparison of models for landslide tsunami generation. Ocean Modelling, 2022; 101943. doi: 10.1016/j.ocemod.2021.101943 |
Iorio V, Bellotti G, Cecioni C, Grilli ST. A numerical model for the efficient simulation of multiple landslide-induced tsunamis scenarios. Ocean Modelling, 2021; 168, 101899. doi: 10.1016/j.ocemod.2021.101899 |
Schambach L, Grilli ST, Tappin DR, Gangemi MD, Barbaro G. Response to: Comment of “New simulations and understanding of the 1908 Messina tsunami for a dual seismic and deep submarine mass failure source” by L. Schambach, S.T. Grilli, D.R. Tappin, M.D. Ganemi, G. Barbaro [Marine Geology 421 (2020) 106093]. Marine Geology, 2021. doi: 10.1016/j.margeo.2021.106636 |
Grilli ST, Mohammadpour M, Schambach L, Grilli AR. Tsunami Coastal Hazard along the US East Coast from coseismic sources in the Açores convergence zone and the Caribbean arc areas. Natural Hazards, 2021. doi: 10.1007/s11069-021-05103-y |
Iorio V, Bellotti G, Cecioni C, Grilli ST. A numerical model for the efficient simulation of multiple landslide-induced tsunamis scenarios. Ocean Modelling, 2021. doi: 10.106/j.ocemod.2021.101899 |
Harris JC, Dombre E, Benoit M, Grilli ST, Kuznetsov KI. Nonlinear time-domain wave-structure interaction: A parallel fast integral equation approach. International Journal for Numerical Methods in Fluids, 2021. doi: 10.1002/fld.5051 |
Schambach L, Grilli ST, Tappin DR, Gangemi MD, Barbaro G. Response to: Comment on “New simulations and understanding of the 1908 Messina tsunami for a dual seismic and deep submarine mass failure source” by L. Schambach, S.T. Grilli, D.R Tappin, M.D. Gangemi, G. Barbaro [Marine Geology 421 (2020) 106093]. Marine Geology, 2021; 442, 106636. doi: 10.1016/j.margeo.2021.106636 |
Grilli ST, Zhang C, Kirby JT, et al. Modeling of the Dec. 22nd 2018 Anak Krakatau volcano lateral collapse and tsunami based on recent field surveys: Comparison with observed tsunami impact. Marine Geology, 2021; 106566. doi: 10.1016/j.margeo.2021.106566 |
Hunt JE, Tappin DR, Watt SFL, et al. Submarine landslide megablocks show half of Anak Krakatau island failed on December 22nd, 2018. Nature Communications, 2021; 12(1), 1-15. doi: 10.1038/s41467-021-22610-5 |
Zhang C, Kirby JT, Shi F, Ma G, Grilli ST. A two-layer non-hydrostatic landslide model for tsunami generation on irregular bathymetry. 2. Numerical discretization and model validation. Ocean Modeling, 2021; 160, 101769. doi: 10.1016/j.ocemod.2021.101769 |
Zhang C., Kirby JT., Shi F., Ma G., Grilli ST. A two-layer non-hydrostatic landslide model for tsunami generation on irregular bathymetry. 1. Theoretical basis. Ocean Modelling, 2021; 159, 101749. doi: 10.1016/j.ocemod |
Schambach L., Grilli S., Tappin D. New high-resolution modeling of the 2018 Palu tsunami, based on supershear earthquake mechanisms and mapped coastal landslides, supports a dual source. Frontiers in Earth Science, 2021; 164, 103755. doi: 10.1016/j.coastaleng.2020.103755 |
O’Reilly CM, Janßen CF, Grilli ST. A Lattice-Boltzmann-based perturbation method. Computers & fluids, 2020; 213, 104723. doi: 10.1016/j.compfluid.2020.104723 |
Varing A, Filipot JF, Grilli A, Duarte R, Roeber V, Yates M. A new definition of the kinematic breaking onset criterion validated with solitary and quasi-regular waves in shallow water. Coastal Engineering, 2020; 103755, doi: 10.1016/j.coastaleng.2020.103755 |
Desmars N, Bonnefoy F, Grilli ST, et al. Experimental and numerical assessment of deterministic nonlinear ocean waves prediction algorithms using non-uniformly sampled wave gauges. Ocean Engineering, 2020; 212, 107659. doi: 10.1016/j.oceaneng.2020.107659 |
Grilli AR, Westcott G, Grilli ST, Spaulding ML, Shi F, Kirby JT. Assessing coastal hazard from extreme storms with a phase resolving wave model: Case study of Narragansett, RI, USA. Coastal Engineering, 2020; 160, 103735. doi: 10.1016/j.coastaleng.2020.103735 |
Derakhti M, Kirby JT, Banner ML, Grilli ST, Thomson J. A unified breaking onset criterion for surface gravity water waves in arbitrary depth. Journal of Geophysical Research: Oceans, 2020; 125(7), e2019JC015886. doi: 10.1029/2019JC015886 |
Boschetti L, Ioualalen M, Nemati F, Grilli S, Dessa JX, Larroque C. Tsunami intensity scale based on wave amplitude and current applied to the French Riviera: the case study of local seismicity. Natural Hazards, 2020; 102, 219–248. doi: 10.1007/s11069-020-03921-0 |
Schambach L, Grilli ST, Tappin DR, Gangemi MD, Barbaro G. New simulations and understanding of the 1908 Messina tsunami for a dual seismic and deep submarine mass failure source. Marine Geology, 2020; 421, 106093. doi: 10.1016/j.margeo.2019.106093 |
Athanassoulis GA, Benoit M, Clamond D, Grilli ST. Foreword to the special issue on nonlinear waves over variable bathymetry. Journal of Ocean Engineering and Marine Energy, 2020: 5, 307–310. doi: 10.1007/s40722-019-00158-3 |
Grilli ST, Horrillo J, Guignard S. Fully Nonlinear Potential Flow Simulations of Wave Shoaling Over Slopes: Spilling Breaker Model and Integral Wave Properties. Water Waves, 2019; 1-35. doi: 10.1007/s42286-019-00017-6 |
Guerin CA, Desmars N, Grilli ST, Ducrozet G. An Improved Lagrangian Model for the Time Evolution of Nonlinear Surface Waves. Journal of Fluid Mechanics, 2019; 876, 527-552. doi: 10.1038/s41598-019-48327-6 |
Grilli ST, Tappin DR, Carey S, et al. Modelling of the Tsunami from the December 22, 2018 Lateral Collapse of Anak Krakatau Volcano in the Sunda Straits, Indonesia. Scientific Reports, 2019; 9, 11946. doi: 10.1038/s41598-019-48327-6 |
Roarty H, Cook T, Hazard L, et al. The Global High Frequency Radar Network. Frontiers in Marine Science. 2019; 6, 164. doi: 10.3389/fmars.2019.00164 |
Torres MJ, Hashemi MR, Hayward S, Spaulding M, Ginis I, Grilli St. Role of Hurricane Wind Models in Accurate Simulation of Storm Surge and Waves. Journal of Waterway, Port, Coastal and Ocean Engineering. 2019; 145(1). doi: 10.1061/(ASCE)WW.1943-5460.0000496 |
Schambach L, Grilli ST, Kirby JT, Shi F. Landslide Tsunami Hazard Along the Upper US East Coast: Effects of Slide Deformation, Bottom Friction, and Frequency Dispersion. Pure and Applied Geophysics. 2018; 1-40. doi: 10.1007/s00024-018-1978-7 |
Schambach L, Grilli AR, Grilli ST, Hashemi MR, King JW. Assessing the Impact of Extreme Storms on Barrier Beaches Along the Atlantic Coastline: Application to the Southern Rhode Island Coast. Coastal Engineering. 2018; 133, 26-42. doi: 10.1016/j.coastaleng.2017.12.004 |
Guérin C-A, Grilli ST. A Probabilistic Method for the Estimation of Ocean Surface Currents from Short Time Series of HF Radar Data. Ocean Modelling. 2018; 121(1), 105-116. doi: 10.1016/j.ocemod.2017.11.010 |