Ocean Engineering Research

Ocean Engineering specializes in six main areas. Each has received substantial research support and are led by faculty who are leaders in their field.

Ocean Instrumentation and Seafloor Mapping

Sea Floor MappingDeals with the development and use of new and improved instruments for monitoring ocean processes, and the subsequent analysis of the data. Areas of current research interest include: design, development, and the operation of sensors, software, systems, and vehicles for underwater acoustic and optical measurements with associated navigation; development of advanced systems for mapping and visualizing the ocean floor; implementation of real-time, geographic information systems for survey data acquisition and processing, and the design, construction, and testing of a ship motion simulator for the testing of vessel attitude and motion sensors for correcting shipboard instruments.

Underwater Acoustics and Data Analysis

Underwater AcousticsThis area deals with the study of sound and vibration in the ocean and seabed, and the associated analysis of both deterministic and random data. Sequences of courses in both acoustics and data analysis are offered. Experimental facilities include an acoustic test tank and the Department’s research vessel for coastal and shallow water research. Past research topics have included: the design and development of special purpose transducers and arrays, deep-water sediment surveying and seismic bottom penetration classification studies using advanced signal processing methods. Recent research has focused on: acoustic transient radiation and scattering from complex fluid loaded structures, shallow water sound propagation, wave propagation in structures, localized space/time wavefields, and active noise and vibration control. Adaptive wavelet and other advanced signal processing methods are being used to investigate a wide range of problems in structural acoustics and wave propagation in general.

Marine Hydrodynamics and Water-wave Mechanics

Involves studies of ocean and nearshore environments and the interaction of bodies with these flow and wave fields. Problems of particular interest are nonlinear wave dynamics and forces on submerged and emergent breakwaters, wave shoaling and breaking on beaches, fluid-structure interaction, wave forces generated by forced body motion, and the drag of marine vehicles.

Coastal and Nearshore Modeling

Focuses on the physical and numerical modeling of coastal and nearshore processes. Models are developed, applied, and verified with field and laboratory measurements. Wind-wave generation, wave refraction, diffraction, shoaling and breaking, surf-zone dynamics and littoral transport, pollutant and oil spill transport, harbor oscillations, tidal and wind- driven circulation in coastal and estuarine waters, and tidal inlet and barrier-island-related problems are studied. Finite difference, finite element, and boundary elements numerical methods are used. The department is also leading in the development of shell-based PC models, with advanced user-friendly graphic interface, model grid generation tools, envision mental management tools, and geographic information systems.

Marine Geomechanics

GeomechanicsDirected toward development of a broad background in the theory and practice of geotechnics in the ocean environment. The research includes experimental and modeling studies to understand and predict properties and behavior of the seabed. Recent sponsored research has included studies on: sediment stress-strain and strength properties; anchor systems; seabed disposal of dredge materials; cable and pipeline siting and burial; instrument development for sediment sampling and in-situ testing; seabed processes including sediment erosion, slope stability, creep deformations, and dynamic processes; foundations for offshore and coastal structures; ice-sediment interactions; dynamic soil properties; and microstructure of sediments. Current research projects, sponsored by four different agencies, focus on downslope processes of slope and rise sediments, coastal benthic boundary- layer processes and properties, ocean disposal of contaminated dredged materials, and geoacoustic properties of the seabed related to mine detection. Modern geotechnical laboratory facilities have up-to-date and specially designed equipment for research on marine sediments.

Coastal and Offshore Structures

Offshore StructuresThe study of nearshore piers, breakwaters, groins, piles, and sewer outfalls as well as common offshore structures such as petroleum drilling and operating platforms. Breakwaters are important for beach and harbor protection against waves and storms and for their ability to minimize oscillation of moored vessels. Groins are used for limiting shoreline erosion, and jetties for the stabilization of inlets and estuary entrances. The offshore structures today are large, generally very complex, and extremely expensive, and most often involve safety considerations for a hundred or more humans. Present research focuses on modeling the response of offshore structures to wave loading and on representing the statistical properties of random wave fields more accurately.

Additional Areas of Study

The Oceanographic Remote Sensing Laboratory is located on the Bay Campus and involves cooperative research between the Graduate School of Oceanography and the Ocean Engineering Department. Corrosion and corrosion control are topics that permeate most of the research activities in the ocean engineering program. In addition, specific thesis topics on corrosion as an important chemical process in the marine environment are receiving increasing attention in the program.

selected research studies

Geotechnical Powerpoint – Baxter

Hydrodynamics – Dahl

Tsunami – S. Grilli

Underwater Acoustics – Miller and Potty

Acoustics – Van Uffelen

Think Big We Do

Copyright © 2018 University of Rhode Island.