Description: (Lecture, 3 credits) Introduction to the basic concepts of the mechanical behavior of composite materials. Analysis and performance of fiber-reinforced composites. Special design considerations and experimental characterization of composites.
Pre-requisite: CVE 220
Instructor: Professor Hamouda Ghonem, Office: Engineering Building Rm 212, Phone: 874-2909, Email: ghonem@uri.edu
Learning Objectives: After completing this course, the student will be able to:
- predict composite properties based on micromechanical theories
- perform stress and strain analysis in anisotropic and orthotropic materials having continuous fiber reinforcement
- model thermal/moisture effects on mechanical properties of CFRC composite materials.
- use Classical Lamination Theory to examine the role of individual plies on the global and local axial, bending and twisting deformation of laminates.
- use failure theories for multiaxial loading to determine the composite survivability.
Course Requirements: Only the basic concepts introduced in an undergraduate strength-of-materials course is necessary. The course, however, requires the knowledge of matrix analysis as well as the use of computational programs (examples are: MATLAB, and Microsoft Excel).
Text : Stress Analysis of Fiber-Reinforced Composite Materials, Michael Hyer, McGraw Hill, 1997
Course Topics:
PART 1: INTRODUCTION:
- Composite Applications
- Composite Constituents: Fibers and Matrix
- Manufacturing Techniques:
PART 2: MECHANICS OF FIBER REINFORCED COMPOSITES
- Micromechanics
- Principles of Elastic-Anisotropy
- Elastic Constants of Unidirectional Composite
- Linear Stress–strain Relations for Fiber Reinforced
- Plane Stress-Strain Relations in Global Coordinates:
PART 3: CLASSICAL LAMINATION THEORIES
- The Kirchhoff Hypothesis
- Laminate Displacements, Strains and Stresses
- Force and Moment Resultant
- Laminate Stiffness: The ABD Matrix:
PART 4: FAILURE THEORIES
- Strength Ratio and Strength of a single layer of CFRC
- Max Stress Criterion
- Max Strain Criterion
- Tsai-Hill Criterion
- Tsai-Wu Criterion
- Fiber-Matrix Failure Criterion
- First Ply Failure
- Fiber Failure:
PART 5: EXPERIMENTAL CHARACTERIZATION
- Interface analysis of fiber reinforced composites
- Experimental characterization of composite materials